發表時間 |
文章標題 |
人氣 |
2015-11-05 |
重症肌無力MG在博元婦產科,做9小時PGS基因晶片快篩Rapid aCGH一次成功 T小姐因為有重症肌無力的困擾,到博元婦產科尋求胚胎著床前診斷PGS, 我們所使用的是9小時快速基因晶片篩檢胚胎, 我們所送的胚胎裡面9個竟然高達8個染色體正常, 根據她的年齡我們植入適當的胚胎, 今天驗孕有抽血懷孕數值高達1046, 看起來是雙胞胎, 但因為她有重症肌無力, 生產的方式跟一般人是不一樣, 我建議她尋求, 高危險妊娠婦產科醫學照顧, 以免在懷孕過程生產過程產生風險, 這是重症肌無力使用基因晶片進行PGS成
|
(11) |
2015-11-05 |
重症肌無力MG在博元婦產科,做9小時PGS基因晶片快篩Rapid aCGH一次成功 T小姐因為有重症肌無力的困擾,到博元婦產科尋求胚胎著床前診斷PGS, 我們所使用的是9小時快速基因晶片篩檢胚胎, 我們所送的胚胎裡面9個竟然高達8個染色體正常, 根據她的年齡我們植入適當的胚胎, 今天驗孕有抽血懷孕數值高達1046, 看起來是雙胞胎, 但因為她有重症肌無力, 生產的方式跟一般人是不一樣, 我建議她尋求, 高危險妊娠婦產科醫學照顧, 以免在懷孕過程生產過程產生風險, 這是重症肌無力使用基因晶片進行PGS成
|
(8) |
2015-10-26 |
一顆就中!快樂當媽! 沒做 最新的 快速Rapid aCGH PGS 胚胎著床前診斷 ,她要懷孕比登天還難 https://www.youtube.com/watch?v=JaPQivVmr6I <iframe width="420" height="315" src="https://www.youtube.com/embed/JaPQivVmr6I" frameborder="0" allowfullscreen></iframe>
|
(14) |
2015-10-25 |
台視電視新聞報導的主角順利生產了!今天抱百萬寶寶(見以下說明)回來~博元慶生 https://www.youtube.com/watch?v=r6ybLCaI6ug 台視電視新聞報導的主角順利生產了!今天抱百萬寶寶(見以下說明)回來~博元慶生 台視電視新聞報導的主角順利生產了!今天抱百萬寶寶(見以下說明)回來~博元慶生 https://www.youtube.com/watch?v=r6ybLCaI6ug 在訂做優生寶寶之前,蔡小姐曾跑遍全台各大醫院,花費近百萬元做4次試管嬰 2015.10.24
|
(5) |
2015-10-25 |
痛失獨生子 48歲婦人 求助博元婦產科把愛子生回來 48歲試管嬰兒成功 THANKS talk https://www.youtube.com/watch?v=TqGi92bykbc <iframe width="960" height="720" src="https://www.youtube.com/embed/TqGi92bykbc" frameborder="0" allowfullscreen></iframe> image1.JPG image2.J
|
(3) |
2015-10-24 |
痛失獨生子 48歲婦人 求助博元婦產科把愛子生回來 48歲試管嬰兒成功 THANKS talk https://www.youtube.com/watch?v=TqGi92bykbc <iframe width="960" height="720" src="https://www.youtube.com/embed/TqGi92bykbc" frameborder="0" allowfullscreen></iframe> image1.JPG
|
(1) |
2015-10-24 |
台視電視新聞報導的主角順利生產了!今天抱百萬寶寶(見以下說明)回來~博元慶生 https://www.youtube.com/watch?v=r6ybLCaI6ug 台視電視新聞報導的主角順利生產了!今天抱百萬寶寶(見以下說明)回來~博元慶生 台視電視新聞報導的主角順利生產了!今天抱百萬寶寶(見以下說明)回來~博元慶生 https://www.youtube.com/watch?v=r6ybLCaI6ug 在訂做優生寶寶之前,蔡小姐曾跑遍全台各大醫院,花費近百萬元做4次試管嬰 2015.10.24
|
(0) |
2015-10-24 |
台視電視新聞報導的主角順利生產了!今天抱百萬寶寶(見以下說明)回來~博元慶生 https://www.youtube.com/watch?v=r6ybLCaI6ug 台視電視新聞報導的主角順利生產了!今天抱百萬寶寶(見以下說明)回來~博元慶生 台視電視新聞報導的主角順利生產了!今天抱百萬寶寶(見以下說明)回來~博元慶生 https://www.youtube.com/watch?v=r6ybLCaI6ug 在訂做優生寶寶之前,蔡小姐曾跑遍全台各大醫院,花費近百萬元做4次試管嬰 2015.10.24
|
(1) |
2015-10-19 |
48歲 痛失獨生子 求助博元婦產科把愛子生回來 https://www.youtube.com/watch?v=x7_3mjQBIq4 48歲 痛失獨生子 求助博元婦產科把愛子生回來 https://www.youtube.com/watch?v=x7_3mjQBIq4 <iframe width="960" height="720" src="https://www.youtube.com/embed/x7_3mjQBIq4" frameb
|
(0) |
2015-10-19 |
48歲 痛失獨生子 求助博元婦產科把愛子生回來 https://www.youtube.com/watch?v=x7_3mjQBIq4 <iframe width="960" height="720" src="https://www.youtube.com/embed/x7_3mjQBIq4" frameborder="0" allowfullscreen></iframe> image1.JPG image2.JPG 一名年紀48歲婦人,其25歲的獨生子在多年前母
|
(0) |
2015-10-14 |
來自威斯康新州麥迪遜的試管嬰兒病人-台灣博元一次成功就三胞胎 https://www.youtube.com/watch?v=zTSVIyX8vUI https://www.youtube.com/watch?v=zTSVIyX8vUI https://www.youtube.com/watch?v=zTSVIyX8vUI https://www.youtube.com/watch?v=zTSVIyX8vUIhttp://www.youtube.com/watch?feature=player_embe
|
(2) |
2015-10-14 |
來自威斯康新州麥迪遜的試管嬰兒病人-台灣博元一次成功就三胞胎 https://www.youtube.com/watch?v=zTSVIyX8vUI https://www.youtube.com/watch?v=zTSVIyX8vUI https://www.youtube.com/watch?v=zTSVIyX8vUI https://www.youtube.com/watch?v=zTSVIyX8vUIhttp://www.youtube.com/watch?feature=player_emb
|
(0) |
2015-10-09 |
10/10 雙十節(週六) 博元婦產科只看上午診 <下午/夜診休診> ; 10/12 陳醫師早上門診 由蔡醫師代診 內置圖片 1
|
(1) |
2015-10-09 |
《不可能的任務:戰勝乳癌!求子成功!!》是一個2015年最令人驚嘆 的故事 TVBS 、各電視台都報導! 絕對不可能的任務!! 打死都不信! 竟然成功!! 生命奇蹟!!不可思議!! 46歲! 打敗第3期乳癌! 還在博元婦產科一次試管嬰兒就龍鳯胎! 生命鬥士:46歲打敗第三期乳癌 11次試管嬰兒失敗 轉到博元婦產科一次成功龍鳳胎 博元婦產科只一次就成功 https://www.youtube.com/watch?v=9TKz1r6QlLQ https://www.youtube.com/watch?v=A51wQklKdqg https://www.youtube.com/watch?v=SZ64SI9BE_U https://www.youtube.com/watch?v=z_3vL5E0UL4 https://www.youtube.com/watch?v=4kmbn57yNRA https://www.youtube.com/watch?v=0x3M5u4VGgc https://www.youtube.com/watch?v=EaY9thzw1Ew https://www.youtube.com/watch?v=ILNcZdz9EQc https://www.youtube.com/watch?v=a5U36l4MeOo 乳癌第3期,,最後在博元婦產科只做一次試管嬰兒雙胞胎 開過刀,11次的化學治療, 25次的放射治療後別的3醫院十多次試管嬰兒失敗 ,最後在博元婦產科只做一次試管嬰兒雙胞胎 cancer https://www.youtube.com/watch?v=A51wQklKdqg <iframe width="1280" height="720" src="https://www.youtube.com/embed/A51wQklKdqg" frameborder="0" allowfullscreen></iframe> https://www.youtube.com/watch?v=A51wQklKdqg <iframe width="560" height="315" src="//www.youtube.com/embed/A51wQklKdqg" frameborder="0" allowfullscreen></iframe> https://www.youtube.com/watch?v=z_3vL5E0UL4 <iframe width="420" height="315" src="//www.youtube.com/embed/z_3vL5E0UL4" frameborder="0" allowfullscreen></iframe> 蘋果日報報導博元婦產科: 乳癌第3期,開過刀,11次的化學治療, 25次的放射治療後別醫院十多次失敗 最後在博元婦產科只做一次試管嬰兒雙胞胎 照片為博元 婦產科蔡鋒博醫師為李小姐做產檢超 音波
|
(2) |
2015-10-02 |
生命鬥士:46歲打敗第三期乳癌 11次試管嬰兒失敗 轉到博元婦產科一次成功龍鳳胎 博元婦產科只一次就成功 https://www.youtube.com/watch?v=9TKz1r6QlLQ https://www.youtube.com/watch?v=A51wQklKdqg https://www.youtube.com/watch?v=SZ64SI9BE_U https://www.youtube.com/watch?v=z_3vL5E0UL4 https://www.youtube.com/watch?v=4kmbn57yNRA https://www.youtube.com/watch?v=0x3M5u4VGgc https://www.youtube.com/watch?v=EaY9thzw1Ew https://www.youtube.com/watch?v=ILNcZdz9EQc https://www.youtube.com/watch?v=a5U36l4MeOo
|
(2) |
2015-09-30 |
9萬元試管嬰兒: 時間:即曰起到10月31日止 報名從速! https://www.facebook.com/ok7260678/videos/vb.504323362/10153592235483363/?type=2&theater¬if_t=video_processed 看圖秒懂! 這學術減免計劃是博元婦產科和彰基基因醫學部的共同研究: 1,本研究目的在研究qPCR based PGS 試管嬰兒成功率能提高! 研究病人的要求: 取卵子數目超過十七個 植入PGS 正常二個胚胎(DET) 計算統計是否如RMANJ一様可達到 懷孕率94.7% ? 活産率84.7% 嗎? 2. 低劑量陰道黃體素的時間之有效性統計 故有此計劃。 qPCR based PGS 的特殊性:新鮮植入! 收案數:70位試管嬰兒病人 日期:暫定10月31日 如果未滿七十人則延後收案日期到今年12月31日 研究背景:美國紐澤西的RMANJ團隊 七十三個病人 平均取卵子數目超過十七個 植入qPCR的PGS植入正常二個胚胎DET 計算統計 懷孕率84.7%? 懷孕率94.7% ? 活産率84.7% ? from: F&S 2013。9月 題目:Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. 9萬元試管嬰兒 時間:即曰起到10月31日止 報名從速! 電話:04-7260678 e-mail: ok7260678@gmail.com 博元婦產科9萬2千元"左右"的試管嬰兒明細說明: 1. 為什麼說左右:因為打針過程會有少量劑量上的增減,比如打針不到1950單位,我們會退費;如果是第三天胚胎植入,我們會退費囊胚培養費8000元 2. 9萬2千元左右試管嬰兒服務細節9項如下: 整個療程! (1)排卵針1950單位 (2)欣得泰6支 (3)克得諾1支 (4)回診抽血6次+超音波4次 (5)取卵手術 (6)胚胎培養 (7)植入胚胎手術 (8)2週黃體素支持療法 以上為9萬2千元左右試管嬰兒的服務實質內容。 以下為除外條款,若是要做: 1. 胚胎著床前遺傳檢查PGS,另計 2. 胚胎著床前基因檢查PGD費用,另計 3. 冷凍胚胎費用,另計 4. 若要累積胚胎以增加懷孕率,一次試管嬰兒療程算一次的費用,另計 博元婦產科處處關心您 電話:04-7260678 時間:即日起至10月31日止 學術研究背景: 為研究 1. 胚胎快篩一條龍試管嬰兒在增加試管嬰兒成功的效率(若要做PGS,費用另計) 2. 陰道黃體素的LOW DOSE劑量時間之有效性統計 故有此計劃。 電話:04-7260678 e-mail: ok7260678@gmail.com 9萬2試管嬰兒 時間:即曰起到10月31日止 報名從速! image1.JPG 從我的 iPhone 傳送
|
(1) |
2015-09-30 |
《一條龍試管嬰兒qPCR》論文 被Molecular cytogenetics 是一個國際期刊拿來廣告對期刊有好的影響 在這封信裡 發表的論文高居第一名被下載的第一名 發表的qPCR論文 被Molecular cytogenetics 是一個國際 期刊拿來廣告對期刊有好的影響 在這封信裡 發表的論文高居第一名被下載的第一名 七月 發表的論文 被期刊拿來廣告 是最常被下載的論文之一 對期刊有好的影響 在這封信裡 發表的論文高居第一名 http://www.molecular cytogenetics.org/content/8/1/49 http://www.molecularcytogenetics.org/content/8/1/49 內置圖片 1內置圖片 2 內置圖片 4 內置圖片 1內置圖片 3內置圖片 2 BioMed Central news@info.biomedcentral.com 透過 bounce.news.springer.com 21:37 (9 小時前) 寄給 我 Dear Colleague, Below is a selection of the latest, highly accessed articles from the open access journal, Molecular Cytogenetics: - Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification - Partial tetrasomy of the proximal long arm of chromosome 15 in two patients: the significance of the gene dosage in terms of phenotype - Genes on B chromosomes of vertebrates Interested in publishing with BioMed Central? Here is what some of our previous authors say: “The reviews were really very good and the reviewers clearly well chosen. This alone would make us submit articles in future.” David Osrin, University College London “This is my first submission. Process has been very straightforward and all communication has been helpful and prompt.” Diane van Rooy, University of Sydney “ I enjoyed the process and felt it was quite efficient. The turn-around time for each step was very quick compared to other manuscript submission systems.” Mark Lazari, University of California, Los Angeles (UCLA) Try it for yourself, submit your manuscript today. Kind regards, BioMed Central BioMed Central Follow BioMed Central: Facebook Twitter LinkedIn YouTube Weibo How to ensure BioMed Central's emails reach your inbox. You have received this message in a belief that it would be of interest. If you would not like to receive any further messages from BioMed Central, please visit our general unsubscribe page. For further information or enquiries please contact Customer Services at: info@biomedcentral.com. BioMed Central Ltd, 236 Gray's Inn Road, London, WC1X 8HB, United Kingdom. Part of Springer Science+Business Media. Privacy Policy. Research Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification Yu-Shih Yang1†, Shun-Ping Chang2†, Hsin-Fu Chen13†, Gwo-Chin Ma24†, Wen-Hsiang Lin2, Chi-Fang Lin1, Feng-Po Tsai5, Cheng-Hsuan Wu6, Horng-Der Tsai6, Tsung-Hsien Lee17 and Ming Chen1268* *Corresponding author: Ming Chenmchen_cch@yahoo.com; mingchenmd@gmail.com † Equal contributors Author Affiliations 1 Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan 2 Department of Genomic Medicine, and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan 3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan 4 Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan 5 Poyuan Women Clinic, Changhua, Taiwan 6 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan 7 Department of Obstetrics and Gynecology, Chung-Shan Medical University, Taichung, Taiwan 8 Department of Life Sciences, Tunghai University, Taichung, Taiwan For all author emails, please log on. Molecular Cytogenetics 2015, 8:49 doi:10.1186/s13039-015-0140-9 Yu-Shih Yang, Shun-Ping Chang, Hsin-Fu Chen and Gwo-Chin Ma contributed equally to this work. The electronic version of this article is the complete one and can be found online at: http://www.molecularcytogenetics.org/content/8/1/49 Received: 11 February 2015 Accepted: 7 May 2015 Published: 8 July 2015 © 2015 Yang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Abstract Background Aneuploidy is an important etiology of implantation failure and quantitative real-time polymerase chain reaction (qPCR) seems a promising preimplantation genetic screening (PGS) technology to detect aneuploidies. This verification study aimed at verifying the impact on reproductive outcomes in in vitrofertilization (IVF) cycles using fresh embryo transfer (FET) in which the embryos were selected by blastocyst biopsy with qPCR-based PGS in our settings. Results A total of 13 infertile couples with more than once failed in vitro fertilization were enrolled during July to October of 2014. PGS was conducted by qPCR with selectively amplified markers to detect common aneuploidies (chromosomes 13, 18, 21, X, and Y). The design of the qPCR molecular markers adopted the locked nucleic acid (LNA) strategy. The blastocyst biopsy was performed on Day 5/6 and the PGS was done on the same day, which enabled FET. A total of 72 blastocysts were biopsied. Successful diagnoses were established in all embryos and the rate of successful diagnosis was 100 %. The aneuploidy rate was 38.9 % (28/72). 28 embryos were transferred. The clinical pregnancy rate was 61.5 % (8/13) per cycle. Early first trimester abortion was encountered in 1 and the ongoing pregnancy rate was 53.8 % (7/13) per cycle. Conclusion This study verified the favorable outcome of adopting PGS with qPCR + FET in our own setting. Expanding the repertoire of aneuploidies being investigated (from a limited set to all 24 chromosomes) is underway and a randomized study by comparing qPCR and other PGS technologies is warranted. Keywords: Aneuploidy; Blastocyst; Fresh embryo transfer; PGS; qPCR http://www.molecularcytogenetics.org/content/8/1/49 Research Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification Yu-Shih Yang1†, Shun-Ping Chang2†, Hsin-Fu Chen13†, Gwo-Chin Ma24†, Wen-Hsiang Lin2, Chi-Fang Lin1, Feng-Po Tsai5, Cheng-Hsuan Wu6, Horng-Der Tsai6, Tsung-Hsien Lee17 and Ming Chen1268* *Corresponding author: Ming Chenmchen_cch@yahoo.com; mingchenmd@gmail.com † Equal contributors Author Affiliations 1 Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan 2 Department of Genomic Medicine, and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan 3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan 4 Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan 5 Poyuan Women Clinic, Changhua, Taiwan 6 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan 7 Department of Obstetrics and Gynecology, Chung-Shan Medical University, Taichung, Taiwan 8 Department of Life Sciences, Tunghai University, Taichung, Taiwan For all author emails, please log on. Molecular Cytogenetics 2015, 8:49 doi:10.1186/s13039-015-0140-9 Yu-Shih Yang, Shun-Ping Chang, Hsin-Fu Chen and Gwo-Chin Ma contributed equally to this work. The electronic version of this article is the complete one and can be found online at: http://www.molecularcytogenetics.org/content/8/1/49 Received: 11 February 2015 Accepted: 7 May 2015 Published: 8 July 2015 © 2015 Yang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Abstract Background Aneuploidy is an important etiology of implantation failure and quantitative real-time polymerase chain reaction (qPCR) seems a promising preimplantation genetic screening (PGS) technology to detect aneuploidies. This verification study aimed at verifying the impact on reproductive outcomes in in vitrofertilization (IVF) cycles using fresh embryo transfer (FET) in which the embryos were selected by blastocyst biopsy with qPCR-based PGS in our settings. Results A total of 13 infertile couples with more than once failed in vitro fertilization were enrolled during July to October of 2014. PGS was conducted by qPCR with selectively amplified markers to detect common aneuploidies (chromosomes 13, 18, 21, X, and Y). The design of the qPCR molecular markers adopted the locked nucleic acid (LNA) strategy. The blastocyst biopsy was performed on Day 5/6 and the PGS was done on the same day, which enabled FET. A total of 72 blastocysts were biopsied. Successful diagnoses were established in all embryos and the rate of successful diagnosis was 100 %. The aneuploidy rate was 38.9 % (28/72). 28 embryos were transferred. The clinical pregnancy rate was 61.5 % (8/13) per cycle. Early first trimester abortion was encountered in 1 and the ongoing pregnancy rate was 53.8 % (7/13) per cycle. Conclusion This study verified the favorable outcome of adopting PGS with qPCR + FET in our own setting. Expanding the repertoire of aneuploidies being investigated (from a limited set to all 24 chromosomes) is underway and a randomized study by comparing qPCR and other PGS technologies is warranted. Keywords: Aneuploidy; Blastocyst; Fresh embryo transfer; PGS; qPCR Background Preimplantation genetic screening (PGS) by Day 3 cleavage stage embryo biopsy followed by examination with fluorescence in situ hybridization (FISH) was once popular strategy for women with advanced maternal age (AMA) [1]. This strategy was based upon an assumption that aneuploidy, which is associate with AMA, is an important factor for implantation failure and therefore such strategy can improve the reproductive outcome [2]. However, a famous randomized study published by Mastenbroek and colleagues reported that such FISH-based PGS with Day 3 biopsy did not confer advantages in women with AMA regarding the live-birth rates [3], and it is then called the “Mastenbroek controversy”. This unexpected finding was subsequently proved by many randomized controlled trials [4] except in one series [5]. Some other researchers thus proposed different strategies including adopting different timing of biopsy (trophectoderm biopsy versus cleavage-stage blastomere biopsy), different molecular technologies which can detect all 24 chromosomes instead of only a few selected chromosomes (which is a major limitation of FISH), and different timing of embryo transfer (fresh or frozen) [1], [6], [7]. Mounting evidences had suggested blastomere biopsy at Day 3 cleavage stage embryos does impair the implantation potential whereas trophectoderm biopsy at Day 5/6 blastocyst does not [8]–[10]. Meanwhile, it is straightforward that using more sophisticated molecular tools may select a better or “more normal” embryo. Competing technologies include array comparative genomic hybridization (CGH), single nucleotide polymorphism (SNP) array, quantitative real-time polymerase chain reaction (qPCR), and next generation sequencing (NGS) [11]. Amongst them, NGS remains to be mostly investigational because of the resources and cost of bioinformatics analyses [12], [13], and therefore the most feasible tools at the present seem to be qPCR and array-based technologies, including SNP array and array CGH [8], [14]–[18]. It is now known that mosaicism is a common phenomenon in early human embryo development, and therefore how to select the embryos with best implantation potential becomes a vital question [19]. It is shown by the research groups who proposed for qPCR that qPCR is superior to array CGH since it enjoys a lower false-positive rate for aneuploidy detection (0 % for qPCR and 5.4 % for array CGH in 122 embryos analyzed), and thereby preserving more embryos available for transfer and ensues a better reproductive outcome [14]. There are now commercially available PGS platforms using array CGH in the market (such as those produced by BlueGnome, UK) and has become very popular because of the feasibility of an easy-to-use system, especially for in vitro fertilization (IVF) centers without a genetic lab as a supporting resort [11]. However, since the outcomes achieved by the team proposing qPCR are compellingly excellent. It thus poses stress upon researchers of the similar field to verify qPCR as a replacement or an alternative to the current popular PGS by array CGH platforms [14]. In this small verification study, we aimed to assess the PGS by qPCR strategy coupled with trophectoderm biopsy at Day 5/6 blastocyst stage. In the initial stage we first verified qPCR only at selected common aneuploidies including chromosome 13, 18, 21, X, and Y (these aneuploidies can be confirmed by FISH). The reasons we assessed only selected chromosomes are three: First, the detail design and experimental conditions regarding qPCR on all 24 chromosomes are patent protected and we need staged efforts to devise and validate our own. Therefore, in this study we adopted a method called locked nucleic acid (LNA) technology to design our qPCR platform [20]; Second, for a rapid overnight diagnosis which is warranted for fresh embryo transfer (FET), it takes a qPCR machine with a 384-well for only one embryo [18], which may not be feasible in real settings in most genetic labs; Third, we believe the “Mastenbroek controversy” may result not only from lacking an effective genotyping system to screen a “better” embryo, but also from the proven impairment of the implantation potential when biopsy at Day 3 cleavage stage embryos [3], [4], [6]. The team proposing qPCR in one hand arguing qPCR is better than FISH because it can examine all 24 chromosomes but in the other hand claiming despite array CGH should have a better resolution than qPCR whereas implying array CGH is “too sensitive” since it has a more false-positive rate when SNP array is used as a gold standard [14], [16], [18]. We thus are interested to know if it is feasible by using a limited qPCR strategy with examination of only selected common aneuploidies (similar to FISH) coupled with trophectoderm biopsy of Day 5/6 blastocyst stage embryos can still achieve a favorable reproductive outcome. It is ethical since it is by theory better than the trial protocol reported in the “Mastenbroek controversy” trial [3], in which a similar number of aneuploidies was assessed by FISH but the biopsy timing was set at Day 3 (when cleavage-stage embryos), a timing now being recognized to be inferior to Day 5/6 blastocyst stage regarding the implantation potential [9]. After the feasibility is confirmed in our setting, it is then justified to expand the repertoire of aneuploidies to 9 chromosomes (13, 15, 16, 17, 18, 21, 22, X and Y. See Rubio et al., 2013 a[5]), or 11 chromosomes (7, 9, 11, 13, 14, 15, 18, 21, 22, X and Y. These are the most commonly found trisomies at abortus. See Wang et al., 2014 [21]) and eventually to 24 chromosomes (1–22, X and Y. See Treff et al., 2012 [1]) in the future. Results Pre-clinical validation Pre-clinical validation for the PGS by qPCR was performed on 54 surplus frozen embryos (Additional file 1: Table S1). Fifty-three of these embryos were successfully diagnosed and the successful diagnostic rate was 98.1 % (53/54). Twenty-four embryos were found to carry aneuploidy on tested chromosomes and the rate of aneuploidy was thus 44.4 % (24/53). The only embryo failed to provide a confirmed diagnosis showed poor qPCR signal, possibly due to a low amount of or degraded DNA in the biopsied sample. FISH diagnosis for that embryo was negative for numerical disorders involving chromosome 13, 18, 21, X, and Y. The remaining cells of this biopsied embryo were sent for array CGH and the diagnosis was trisomy 22. Clinical verification A total of 72 embryos at Day 5/6 blastocyst stage from 13 patients were biopsied and assessed, and all (100 %) of them were successfully diagnosed (Table 1 and Additional file 1: Table S1). Twenty-eight (38.9 %) of these embryos were aneuploid, which included 4 monosomy 13, 5 monosomy 21, 7 trisomy 13, 1 trisomy 18, 9 trisomy 21, 1 monosomy 13 + trisomy 18, and 1 monosomy 18 + monosomy 21. The remaining 44 (61.1 %) embryos were euploidy, of which 28 were transferred into the 13 patients in 13 cycles. The average number of the embryos being transferred is 2.15, actually only 1–2 embryos were transferred in all women of the Group B (non-AMA group, n = 10). The only 2 women who were transferred for 4 embryos are both in the Group A (AMA group, n = 3). The transfer procedure follows the medical rule of Taiwan that the upper limit of the number of the embryos being transferred is 4. These transfers achieved 8 pregnancies, and therefore the clinical pregnancy rate was 61.5 % (8/13) per cycle. However, one early abortion was noted and the ongoing pregnancy rate up to the second trimester was 53.8 % (7/13) per transfer cycle. There were no monozygotic twinning and a total of 11 sacs were noted. Three women who were transferred for 2 embryos in the Group B had singleton pregnancies, and two women who were transferred for 2 embryos in the Group B and 2 women who were transferred for 4 embryos in the Group A had dizygotic twin pregnancies (Additional file 1: Table S1). The sustained implantation rate was thus 39.3 % (11/28) per transferred fresh embryo (Table 1). Totally, there are 2 of 3 women in Group A had ongoing pregnancies. Six women in Group B had clinical pregnancies, and 5 of them had sustained ongoing pregnancies. There are no statistical significant differences noted between these two groups regarding aneuploidy (Chi square test, p = 0.094), clinical pregnancy (Fisher's exact test, p = 1), and ongoing pregnancy (Fisher's exact test, p = 1). Array CGH for the only abortion case revealed the karyotype was 46,XY. Table 1. Clinical outcomes of PGS by qPCR with fresh embryo transfer (FET) verification series Discussion The major difficulty of comprehensive chromosome screening (CCS) by qPCR for PGS is to devise a primer set to successfully amplify the molecular markers being selected in a single experiment by optimizing the conditions for melting temperatures and experimental time intervals. In this study we successfully adopted a smart design called LNA methodology [20], [22]–[24] for qPCR PGS and verified the strategy by achieving a favorable ongoing pregnancy rate of 53.8 %. We first validated the genotyping platform we devised by achieving an almost 100 % successful diagnosis rate (98.1 %), and then verified the whole protocol of qPCR PGS followed by FET. Since the sample size is small (n = 13 cycles), it is not surprising that we failed to observe significant difference regarding the aneuploidy rates between the AMA (n = 3) and the non-AMA group (n = 10) in our patients. Meanwhile, the aneuploidy rate in our series (38.9 %) is apparently much lower than the rates observed by 24-chromosome qPCR or array CGH (more than 60 %), which is obviously due to the fact that we only selected a limited set of common aneuploidies that can ensue live births in humans [14], [15]. It has been a routine practice in our settings that PGS by FISH at Day 3 cleavage-stage embryos since 2005 and it is ethical for us to offer our patients who opted for this alternative protocol a strategy which has an advantage of an established less detrimental effect upon implantation potential by changing the timing of biopsy from Day 3 to Day 5/6 and the same repertoire of common aneuploidies being tested (but simply using qPCR instead of FISH) to enable FET[9]. The reason only trisomy 13, 18, 21, and numerical disorders involving X and Y were tested in our settings is because these are the only aneuploidies that may result in live births in humans. For people who opted for this strategy and came to our clinics, their major concern is more focused at aneuploidies instead of live birth rates. In addition, it is well recognized that despite fewer embryos would be available for transfer if being cultured in vitro onto the blastocyst stage when compared with the cleavage-stage embryos, the disadvantage may be offset by the fact that the aneuploidy rate of the blastocysts is much lower than of the cleavage-stage embryos. An observational study had reported that karyotypic evolution did exist in early human embryogenesis, in which some cleavage stage embryos classified as aneuploidy by FISH eventually developed into euploid blastocysts if by SNP array[25]. A recent randomized study even pointed out that FISH-based PGS conferred advantages at women who are in the AMA group, but not in those with repeated implantation failures group, as long as the biopsy was performed at the blastocyst stage [5]. A recent randomized trial (the BEST trial) had demonstrated that qPCR PGS CCS followed by single embryo transfer (SET) can enhance the feasibility of SET by selecting a single euploid embryo with high reproductive potential without compromising the delivery rates when compared with transfer of two unselected embryos, which instead resulted in more multiple pregnancies and the associated complications such as preterm delivery, low birth weight, and NICU (Neonatal Intensive Care Unit) admission [26]. We admit our pilot verification study had suffered from the fact that only common aneuploidies of five chromosome pairs (13, 18, 21, X, and Y) were screened and apparently it is the reason that the implantation rate per embryo in our study (39.3 %) is much lower than that in the BEST trial (69 %) [26]. However, our patients were all informed consented and knew the disadvantage before joining the study, and the limitations of the local setting were clearly disclosed to the patients. The patients were free to choose another PGS protocol by array CGH (Option 2, please refer to Patients and methods section) instead. Conclusions The merit of our work is that this is the first effort from research groups other than the original group who proposed the qPCR CCS (Reproductive Medicine Associates of New Jersey, Morristown, NJ, USA) trying to validate and verify this novel genotyping platform which was developed in-house by ourselves. Despite our results did not have matched controls such as those cycles receiving IVF but without PGS, the ongoing pregnancy rate is similar to a previous PGD series from our setting (53.8 % versus 50 %, please refer to Chang et al., 2013 [27]), indicating this protocol is clinically feasible. Future efforts will be made upon expanding the repertoire of the PGS by qPCR CCS to all 24 chromosomes, as well as carefully-designed randomized controlled trials to compare this genotyping platform with others (including no-screening, array CGH, and NGS). Patients and methods Design and selection of molecular markers for qPCR PGS An in-house screening system by dual-color qPCR was developed with specific primers for the targeted loci (situated at chromosome 13, 18, 21, X, and Y) and one internal control locus (situated at chromosome 1, the reason we chose chromosome 1 as control is because it is the least found trisomy in humans, see Wang et al., 2014 [21]). A total of 16 targeted loci and one control locus were selected. For the detailed information about the targeted loci, please refer to Table 2. Specific primers for amplification of each locus were designed by using the software Oligo 6.71 (Molecular Biology Insights, Colorado, USA), and all primer sets are flanked on each side of the exon-intron boundary to avoid possible mRNA interference. The applications of LNA-modified probes are well-established for quantifying levels of gene expression with an advantage of reducing complexity [22], [24], but has not been applied to the detection of chromosomal copy number alterations. Two kinds of LNA-modified probes, labeled with FAM™ and HEX™ (Integrated DNA Technologies, Iowa, USA) at the 5’-end, were used for quantifying the genomic copy numbers of targeted loci and control. Table 2. Summary of the targeted regions for screening of common aneuploidies Validation of qPCR in detecting common aneuploidies Each 5 cells separated from the cell lines of known common aneuploidies (including trisomy 21, trisomy 13, trisomy 18, 47,XXY, and 45,X) were processed by cell lysis of proteinase K, and the products were subjected to a 50-μL reaction volume of multiplex nested-PCR amplication for 18 cycles using an Applied Biosystems Veriti thermal cycler (Life Technologies, California, USA), and then the PCR products were purified using Agencourt AMPure XP system (Beckman Coulter, California, USA). Dual color hydrolysis probe assays were performed in triplicate to normalize and simpify calculation and to evaluate chromosomal copies, using Lightcycler 480 probes Master (Roche, Mannheim, Germany), a 20-μL reaction volume, a 96-well plate, and a 7 Light Cycler 480 Real-Time PCR System, as recommended by the supplier (Roche, Mannheim, Germany). Each well contains a particular target, and a common control reaction. A unique method of the standard delta delta threshold cycle (ΔΔCp) method was used for relative quantification. In our experiments, the Cp variation of all HEX™ reactions obtained for each well of the same sample will be controlled and ranged in less than 0.2, indicating the test sample was evenly distributed to each well. Each chromosome-specific ΔCp was calculated from the Cp of the FAM™ reactions targeting a specific chromosome minus the control Cp of the HEX™ reactions targeting the chromosome 1 within the same well. The same process was applied to individually determine the ΔCp for each targeted chromosome of the test sample, including reference set of normal male cell lines [BCRC number: 08C0011, 08C0012, 08C0013, 08C0021 and 08C0025]. Each chromosome- specific ΔCp was then normalized to the average chromosome-specific ΔCp values derived from the same evaluation of the reference set, which had been confirmed by FISH method. The calibrated chromosome-specific ΔCp values were used to calculate fold change by considering the ΔΔCp values as the negative exponent of 2, as previously described [18], [23]. The methodology was designed to specifically identify whole-chromosome but not segmental aneuploidy. The flowchart and diagram of the in-house qPCR PGS system were illustrated in Fig. 1. This qPCR was capable of accurate aneuploidy screening in 4 h, which allowed rapid evaluation of the trophectoderm biopsies and therefore provided a feasible opportunity for subsequent FET. thumbnailFig. 1. The diagram of the in-house qPCR PGS system. The flowchart of (a) detection of common aneuploidies, and (b) signal normalization and data analysis Pre-clinical validation upon surplus frozen embryos Fifty-four thawed frozen embryos at blastocyst stage were biopsied and sent for qPCR and FISH analyses. These embryos were retrieved from the surplus frozen embryos of couples who already conceived and would be discarded if not being investigated for research purpose. In those embryos diagnosed with common chromosome aneuploidies, array CGH was used to confirm the diagnoses. Clinical verification for fresh embryos In our setting we used to offer two PGS protocols. One option (Option 1) is Day 3 biopsy followed by PGS with FISH and FET; the other option (Option 2) is Day 5/6 trophectoderm biopsy followed by PGS with array CGH and frozen embryo transfer (because array CGH takes time and FET was not feasible at the study period). Only patients who had history of failed IVF (without PGS) for at least once and who opted for Option 1 were given the chance of joining this study as an alternative. All patients chose to join this study were informed consented and their autonomy was fully respected. They could choose to withdraw from the study at any time during the study period and were fully aware of the alternatives, including sticking to Option 1 or instead chose Option 2 without joining the study. During July to October of 2014, 13 infertile couples were enrolled. Among these 13 patients, 3 of them had AMA (37, 43, 45 years old respectively). The mean age of the total 13 patients was 34.1 years. No confounding factors that may affect implantation such as immune aberrations (antiphospholipid antibody syndrome in the mother), balanced translocation carriers (in both couples), and thrombophilias (protein C/S/antithrombin III deficiency) existed in these couples when they were enrolled. Clinical pregnancy was defined as positive urine HCG. Ongoing pregnancy rate (per cycle) was defined as those pregnancies proceeding into second trimester (and for each embryo being transferred, sustained implantation rate was used). 13 couples were classified as those whose age is older or equal to 35 years (Group A), and those whose age is less than 35 years (Group B). Chi square test or Fisher’s exact test was used to compare the reproductive outcomes between the groups regarding the rate of aneuploidy, clinical pregnancy, and ongoing pregnancy. Notably according to the regulations of Taiwan government, the patients would not know the results of the fetal sex. Even in aneuploidies involving sex chromosomes (specifically 47,XXY and 45,X), the results would not be disclosed to patients and only “aneuploidy” would be told to the patients and the aneuploid embryos would not be selected for transfer. In those embryos diagnosed to have chromosomal aneuploidies by qPCR, array CGH was used to confirm the diagnoses. Abbreviations AMA: Advanced maternal age CCS: Comprehensive chromosome screening CGH: Comparative genomic hybridization FET: Fresh embryo transfer FISH: Fluorescence in situ hybridization IVF: in vitro fertilization LNA: Locked nucleic acid NGS: Next generation sequencing PGS: Preimplantation genetic screening qPCR: Quantitative real-time polymerase chain reaction SET: Single embryo transfer SNP: Single nucleotide polymorphism Competing interests The authors declare that they have no competing interests. Authors’ contributions YSY, HFC, SPC, FPT, MC designed the study. SPC, GCM, MC developed the novel in-house genotyping platform. SPC, GCM, WHL, CFL, MC did the experiments. YSY, HFC, FPT, CHW, HDT, MC recruited the patients. YSY, HFC, GCM, THL, MC analyzed the results. YSY, SPC, GCM, WHL, MC wrote the paper. All authors read and approved the final manuscript. Additional file Additional file 1: Table S1.. Summary of the pre-clinical validation (for 54 surplus frozen embryos) and clinical verification (for 13 patients with 54 embryos) of PGS by qPCR. Format: DOCX Size: 32KB Download fileOpen Data Acknowledgements This study is partly funded by a grant from Changhua Christian Hospital, Taiwan to Ming Chen (103-CCH-IST-006). The authors are grateful for the genuine support and advice from Dr. Shou-Jen Kuo, the Superintendent of Changhua Christian Hospital, who also participated in the development of the novel in-house qPCR CCS system. References Treff NR, Scott RT. Methods for comprehensive chromosome screening of oocytes and embryos: capabilities, limitations, and evidence of validity. J Assist Reprod Genet. 2012; 29(5):381-90.PubMed Abstract | Publisher Full Text OpenURL Harton GL, Munne S, Surrey M, Grifo J, Kaplan B, McCulloh DH et al..Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013; 100(6):1695-703. PubMed Abstract |Publisher Full Text OpenURL Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR et al.. In vitro fertilization with preimplantation genetic screening. New Engl J Med. 2007; 357(1):9-17. PubMed Abstract | Publisher Full Text OpenURL Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs.Hum Reprod Update. 2011; 17(4):454-66. PubMed Abstract |Publisher Full Text OpenURL Rubio C, Bellver J, Rodrigo L, Bosch E, Mercader A, Vidal C, et al. Preimplantation genetic screening using fluorescence in situ hybridization in patients with repetitive implantation failure and advanced maternal age: two randomized trials. Fertil Steril. 2013;99(5):1400–7.a Braude P. Selecting the 'best' embryos: prospects for improvement. Reprod Biomed Online. 2013; 27(6):244-53.Publisher Full Text OpenURL Mastenbroek S, Repping S. Preimplantation genetic screening: back to the future. Hum Reprod. 2014; 29(9):1846-50. PubMed Abstract |Publisher Full Text OpenURL Scott RT, Ferry K, Su J, Tao X, Scott K, Treff NR. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012; 97(4):870-5. PubMed Abstract |Publisher Full Text OpenURL Scott KL, Hong KH, Scott RT. Selecting the optimal time to perform biopsy for preimplantation genetic testing. Fertil Steril. 2013;100(3):608-14. PubMed Abstract | Publisher Full Text OpenURL Scott RT, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D et al..Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial.Fertil Steril. 2013; 100(3):697-703. PubMed Abstract |Publisher Full Text OpenURL Handyside AH. 24-chromosome copy number analysis: a comparison of available technologies. Fertil Steril. 2013;100(3):595-602. PubMed Abstract | Publisher Full Text OpenURL Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E, Cottone G et al..Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29(12):2802-13. PubMed Abstract | Publisher Full Text OpenURL Wells D, Kaur K, Grifo J, Glassner M, Taylor JC, Fragouli E et al.. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet. 2014; 51(8):553-62. PubMed Abstract |Publisher Full Text OpenURL Capalbo A, Treff NR, Cimadomo D, Tao X, Upham K, Ubaldi FM, et al. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies. Eu J Hum Genet. 2014;doi:10.1038/ejhg.2014.222(in press). Rubio C, Rhodrigo L, Mir P, Mateu E, Peinado V, Milan M, et al. Use of array comparative genomic hybridization (array-CGH) for embryo assessment: clinical results. Fertil Steril. 2013;99(4):1044–8.b Schoolcraft WB, Treff NR, Stevens JM, Ferry K, Katz-Jaffe M, Scott RT.Live birth outcome with trophectoderm biopsy, blastocyst vitrification, and single-nucleotide polymorphism microarray-based comprehensive chromosome screening in infertile patients.Fertil Steril. 2011; 96(3):638-40. PubMed Abstract | Publisher Full Text OpenURL Treff NR, Levy B, Su J, Northrop LE, Tao X, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH. Mol Hum Reprod. 2010; 16(8):583-9.PubMed Abstract | Publisher Full Text OpenURL Treff NR, Tao X, Ferry KM, Su J, Taylor D, Scott RT. Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril. 2012; 97(4):819-24. PubMed Abstract | Publisher Full Text OpenURL Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C et al..Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009; 15(5):577-83. PubMed Abstract |Publisher Full Text OpenURL Brunet E, Corgnali M, Cannata F, Perrouault L, Giovannangeli C.Targeting chromosomal sites with locked nucleic acid-modified triplex-forming oligonucleotides: study of efficiency dependence on DNA nuclear environment. Nucleic Acids Res. 2006; 34(16):4546-53. PubMed Abstract | Publisher Full Text OpenURL Wang BT, Chong TP, Boyar FZ, Kopita KA, Ross LP, El-Naggar MM et al..Abnormalities in spontaneous abortions detected by G-banding and chromosomal microarray analysis (CMA) at a national reference laboratory. Mol Cytogenet. 2014; 22:7-33. OpenURL Mouritzen P, Nielsen PS, Jacobsen N, Noerholmn M, Lomholt C, Pfundheller HM et al.. The ProbeLibrary—expression profiling 99 % of all human genes usingonly 90 dual-labeled real-time PCR probes. Biotechniques. 2004; 37:492-495. OpenURL Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008; 3:1101-8.PubMed Abstract | Publisher Full Text OpenURL Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S.OligoDesign: optimal design of LNA (lockednucleic acid) oligonucleotide capture probes for gene expression profiling.Nucleic Acids Res. 2003; 31:3758-62. PubMed Abstract |Publisher Full Text OpenURL Northrop LE, Treff NR, Levy B, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16(8):590-600. PubMed Abstract | Publisher Full Text OpenURL Forman EJ, Hong KH, Franasiak JM, Scott RT. Obstetrical and neonatal outcomes from the BEST Trial: single embryo transfer with aneuploidy screening improves outcomes after in vitro fertilization without compromising delivery rates. Am J Obstet Gynecol. 2014;210(2):157.e1-6. PubMed Abstract | Publisher Full Text OpenURL Chang LJ, Huang CC, Tsai YY, Hung CC, Fang MY, Lin YC et al..Blastocyst biopsy and vitrification are effective for preimplantation genetic diagnosis of monogenic diseases. Hum Reprod. 2013;28(5):1435-44. PubMed Abstract | Publisher Full Text OpenURL
|
(10) |
2015-09-30 |
發表的 《一條龍試管嬰兒qPCR》論文 被Molecular cytogenetics 是一個國際期刊拿來廣告對期刊有好的影響 在這封信裡 發表的論文高居第一名被下載的第一名 發表的qPCR論文 被Molecular cytogenetics 是一個國際 期刊拿來廣告對期刊有好的影響 在這封信裡 發表的論文高居第一名被下載的第一名 七月 發表的論文 被期刊拿來廣告 是最常被下載的論文之一 對期刊有好的影響 在這封信裡 發表的論文高居第一名 http://www.molecular cytogenetics.org/content/8/1/49 http://www.molecularcytogenetics.org/content/8/1/49 內置圖片 1內置圖片 2 內置圖片 4 內置圖片 1內置圖片 3內置圖片 2 BioMed Central news@info.biomedcentral.com 透過 bounce.news.springer.com 21:37 (9 小時前) 寄給 我 Dear Colleague, Below is a selection of the latest, highly accessed articles from the open access journal, Molecular Cytogenetics: - Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification - Partial tetrasomy of the proximal long arm of chromosome 15 in two patients: the significance of the gene dosage in terms of phenotype - Genes on B chromosomes of vertebrates Interested in publishing with BioMed Central? Here is what some of our previous authors say: “The reviews were really very good and the reviewers clearly well chosen. This alone would make us submit articles in future.” David Osrin, University College London “This is my first submission. Process has been very straightforward and all communication has been helpful and prompt.” Diane van Rooy, University of Sydney “ I enjoyed the process and felt it was quite efficient. The turn-around time for each step was very quick compared to other manuscript submission systems.” Mark Lazari, University of California, Los Angeles (UCLA) Try it for yourself, submit your manuscript today. Kind regards, BioMed Central BioMed Central Follow BioMed Central: Facebook Twitter LinkedIn YouTube Weibo How to ensure BioMed Central's emails reach your inbox. You have received this message in a belief that it would be of interest. If you would not like to receive any further messages from BioMed Central, please visit our general unsubscribe page. For further information or enquiries please contact Customer Services at: info@biomedcentral.com. BioMed Central Ltd, 236 Gray's Inn Road, London, WC1X 8HB, United Kingdom. Part of Springer Science+Business Media. Privacy Policy. Research Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification Yu-Shih Yang1†, Shun-Ping Chang2†, Hsin-Fu Chen13†, Gwo-Chin Ma24†, Wen-Hsiang Lin2, Chi-Fang Lin1, Feng-Po Tsai5, Cheng-Hsuan Wu6, Horng-Der Tsai6, Tsung-Hsien Lee17 and Ming Chen1268* *Corresponding author: Ming Chenmchen_cch@yahoo.com; mingchenmd@gmail.com † Equal contributors Author Affiliations 1 Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan 2 Department of Genomic Medicine, and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan 3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan 4 Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan 5 Poyuan Women Clinic, Changhua, Taiwan 6 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan 7 Department of Obstetrics and Gynecology, Chung-Shan Medical University, Taichung, Taiwan 8 Department of Life Sciences, Tunghai University, Taichung, Taiwan For all author emails, please log on. Molecular Cytogenetics 2015, 8:49 doi:10.1186/s13039-015-0140-9 Yu-Shih Yang, Shun-Ping Chang, Hsin-Fu Chen and Gwo-Chin Ma contributed equally to this work. The electronic version of this article is the complete one and can be found online at: http://www.molecularcytogenetics.org/content/8/1/49 Received: 11 February 2015 Accepted: 7 May 2015 Published: 8 July 2015 © 2015 Yang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Abstract Background Aneuploidy is an important etiology of implantation failure and quantitative real-time polymerase chain reaction (qPCR) seems a promising preimplantation genetic screening (PGS) technology to detect aneuploidies. This verification study aimed at verifying the impact on reproductive outcomes in in vitrofertilization (IVF) cycles using fresh embryo transfer (FET) in which the embryos were selected by blastocyst biopsy with qPCR-based PGS in our settings. Results A total of 13 infertile couples with more than once failed in vitro fertilization were enrolled during July to October of 2014. PGS was conducted by qPCR with selectively amplified markers to detect common aneuploidies (chromosomes 13, 18, 21, X, and Y). The design of the qPCR molecular markers adopted the locked nucleic acid (LNA) strategy. The blastocyst biopsy was performed on Day 5/6 and the PGS was done on the same day, which enabled FET. A total of 72 blastocysts were biopsied. Successful diagnoses were established in all embryos and the rate of successful diagnosis was 100 %. The aneuploidy rate was 38.9 % (28/72). 28 embryos were transferred. The clinical pregnancy rate was 61.5 % (8/13) per cycle. Early first trimester abortion was encountered in 1 and the ongoing pregnancy rate was 53.8 % (7/13) per cycle. Conclusion This study verified the favorable outcome of adopting PGS with qPCR + FET in our own setting. Expanding the repertoire of aneuploidies being investigated (from a limited set to all 24 chromosomes) is underway and a randomized study by comparing qPCR and other PGS technologies is warranted. Keywords: Aneuploidy; Blastocyst; Fresh embryo transfer; PGS; qPCR http://www.molecularcytogenetics.org/content/8/1/49 Research Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification Yu-Shih Yang1†, Shun-Ping Chang2†, Hsin-Fu Chen13†, Gwo-Chin Ma24†, Wen-Hsiang Lin2, Chi-Fang Lin1, Feng-Po Tsai5, Cheng-Hsuan Wu6, Horng-Der Tsai6, Tsung-Hsien Lee17 and Ming Chen1268* *Corresponding author: Ming Chenmchen_cch@yahoo.com; mingchenmd@gmail.com † Equal contributors Author Affiliations 1 Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan 2 Department of Genomic Medicine, and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan 3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan 4 Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan 5 Poyuan Women Clinic, Changhua, Taiwan 6 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan 7 Department of Obstetrics and Gynecology, Chung-Shan Medical University, Taichung, Taiwan 8 Department of Life Sciences, Tunghai University, Taichung, Taiwan For all author emails, please log on. Molecular Cytogenetics 2015, 8:49 doi:10.1186/s13039-015-0140-9 Yu-Shih Yang, Shun-Ping Chang, Hsin-Fu Chen and Gwo-Chin Ma contributed equally to this work. The electronic version of this article is the complete one and can be found online at: http://www.molecularcytogenetics.org/content/8/1/49 Received: 11 February 2015 Accepted: 7 May 2015 Published: 8 July 2015 © 2015 Yang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Abstract Background Aneuploidy is an important etiology of implantation failure and quantitative real-time polymerase chain reaction (qPCR) seems a promising preimplantation genetic screening (PGS) technology to detect aneuploidies. This verification study aimed at verifying the impact on reproductive outcomes in in vitrofertilization (IVF) cycles using fresh embryo transfer (FET) in which the embryos were selected by blastocyst biopsy with qPCR-based PGS in our settings. Results A total of 13 infertile couples with more than once failed in vitro fertilization were enrolled during July to October of 2014. PGS was conducted by qPCR with selectively amplified markers to detect common aneuploidies (chromosomes 13, 18, 21, X, and Y). The design of the qPCR molecular markers adopted the locked nucleic acid (LNA) strategy. The blastocyst biopsy was performed on Day 5/6 and the PGS was done on the same day, which enabled FET. A total of 72 blastocysts were biopsied. Successful diagnoses were established in all embryos and the rate of successful diagnosis was 100 %. The aneuploidy rate was 38.9 % (28/72). 28 embryos were transferred. The clinical pregnancy rate was 61.5 % (8/13) per cycle. Early first trimester abortion was encountered in 1 and the ongoing pregnancy rate was 53.8 % (7/13) per cycle. Conclusion This study verified the favorable outcome of adopting PGS with qPCR + FET in our own setting. Expanding the repertoire of aneuploidies being investigated (from a limited set to all 24 chromosomes) is underway and a randomized study by comparing qPCR and other PGS technologies is warranted. Keywords: Aneuploidy; Blastocyst; Fresh embryo transfer; PGS; qPCR Background Preimplantation genetic screening (PGS) by Day 3 cleavage stage embryo biopsy followed by examination with fluorescence in situ hybridization (FISH) was once popular strategy for women with advanced maternal age (AMA) [1]. This strategy was based upon an assumption that aneuploidy, which is associate with AMA, is an important factor for implantation failure and therefore such strategy can improve the reproductive outcome [2]. However, a famous randomized study published by Mastenbroek and colleagues reported that such FISH-based PGS with Day 3 biopsy did not confer advantages in women with AMA regarding the live-birth rates [3], and it is then called the “Mastenbroek controversy”. This unexpected finding was subsequently proved by many randomized controlled trials [4] except in one series [5]. Some other researchers thus proposed different strategies including adopting different timing of biopsy (trophectoderm biopsy versus cleavage-stage blastomere biopsy), different molecular technologies which can detect all 24 chromosomes instead of only a few selected chromosomes (which is a major limitation of FISH), and different timing of embryo transfer (fresh or frozen) [1], [6], [7]. Mounting evidences had suggested blastomere biopsy at Day 3 cleavage stage embryos does impair the implantation potential whereas trophectoderm biopsy at Day 5/6 blastocyst does not [8]–[10]. Meanwhile, it is straightforward that using more sophisticated molecular tools may select a better or “more normal” embryo. Competing technologies include array comparative genomic hybridization (CGH), single nucleotide polymorphism (SNP) array, quantitative real-time polymerase chain reaction (qPCR), and next generation sequencing (NGS) [11]. Amongst them, NGS remains to be mostly investigational because of the resources and cost of bioinformatics analyses [12], [13], and therefore the most feasible tools at the present seem to be qPCR and array-based technologies, including SNP array and array CGH [8], [14]–[18]. It is now known that mosaicism is a common phenomenon in early human embryo development, and therefore how to select the embryos with best implantation potential becomes a vital question [19]. It is shown by the research groups who proposed for qPCR that qPCR is superior to array CGH since it enjoys a lower false-positive rate for aneuploidy detection (0 % for qPCR and 5.4 % for array CGH in 122 embryos analyzed), and thereby preserving more embryos available for transfer and ensues a better reproductive outcome [14]. There are now commercially available PGS platforms using array CGH in the market (such as those produced by BlueGnome, UK) and has become very popular because of the feasibility of an easy-to-use system, especially for in vitro fertilization (IVF) centers without a genetic lab as a supporting resort [11]. However, since the outcomes achieved by the team proposing qPCR are compellingly excellent. It thus poses stress upon researchers of the similar field to verify qPCR as a replacement or an alternative to the current popular PGS by array CGH platforms [14]. In this small verification study, we aimed to assess the PGS by qPCR strategy coupled with trophectoderm biopsy at Day 5/6 blastocyst stage. In the initial stage we first verified qPCR only at selected common aneuploidies including chromosome 13, 18, 21, X, and Y (these aneuploidies can be confirmed by FISH). The reasons we assessed only selected chromosomes are three: First, the detail design and experimental conditions regarding qPCR on all 24 chromosomes are patent protected and we need staged efforts to devise and validate our own. Therefore, in this study we adopted a method called locked nucleic acid (LNA) technology to design our qPCR platform [20]; Second, for a rapid overnight diagnosis which is warranted for fresh embryo transfer (FET), it takes a qPCR machine with a 384-well for only one embryo [18], which may not be feasible in real settings in most genetic labs; Third, we believe the “Mastenbroek controversy” may result not only from lacking an effective genotyping system to screen a “better” embryo, but also from the proven impairment of the implantation potential when biopsy at Day 3 cleavage stage embryos [3], [4], [6]. The team proposing qPCR in one hand arguing qPCR is better than FISH because it can examine all 24 chromosomes but in the other hand claiming despite array CGH should have a better resolution than qPCR whereas implying array CGH is “too sensitive” since it has a more false-positive rate when SNP array is used as a gold standard [14], [16], [18]. We thus are interested to know if it is feasible by using a limited qPCR strategy with examination of only selected common aneuploidies (similar to FISH) coupled with trophectoderm biopsy of Day 5/6 blastocyst stage embryos can still achieve a favorable reproductive outcome. It is ethical since it is by theory better than the trial protocol reported in the “Mastenbroek controversy” trial [3], in which a similar number of aneuploidies was assessed by FISH but the biopsy timing was set at Day 3 (when cleavage-stage embryos), a timing now being recognized to be inferior to Day 5/6 blastocyst stage regarding the implantation potential [9]. After the feasibility is confirmed in our setting, it is then justified to expand the repertoire of aneuploidies to 9 chromosomes (13, 15, 16, 17, 18, 21, 22, X and Y. See Rubio et al., 2013 a[5]), or 11 chromosomes (7, 9, 11, 13, 14, 15, 18, 21, 22, X and Y. These are the most commonly found trisomies at abortus. See Wang et al., 2014 [21]) and eventually to 24 chromosomes (1–22, X and Y. See Treff et al., 2012 [1]) in the future. Results Pre-clinical validation Pre-clinical validation for the PGS by qPCR was performed on 54 surplus frozen embryos (Additional file 1: Table S1). Fifty-three of these embryos were successfully diagnosed and the successful diagnostic rate was 98.1 % (53/54). Twenty-four embryos were found to carry aneuploidy on tested chromosomes and the rate of aneuploidy was thus 44.4 % (24/53). The only embryo failed to provide a confirmed diagnosis showed poor qPCR signal, possibly due to a low amount of or degraded DNA in the biopsied sample. FISH diagnosis for that embryo was negative for numerical disorders involving chromosome 13, 18, 21, X, and Y. The remaining cells of this biopsied embryo were sent for array CGH and the diagnosis was trisomy 22. Clinical verification A total of 72 embryos at Day 5/6 blastocyst stage from 13 patients were biopsied and assessed, and all (100 %) of them were successfully diagnosed (Table 1 and Additional file 1: Table S1). Twenty-eight (38.9 %) of these embryos were aneuploid, which included 4 monosomy 13, 5 monosomy 21, 7 trisomy 13, 1 trisomy 18, 9 trisomy 21, 1 monosomy 13 + trisomy 18, and 1 monosomy 18 + monosomy 21. The remaining 44 (61.1 %) embryos were euploidy, of which 28 were transferred into the 13 patients in 13 cycles. The average number of the embryos being transferred is 2.15, actually only 1–2 embryos were transferred in all women of the Group B (non-AMA group, n = 10). The only 2 women who were transferred for 4 embryos are both in the Group A (AMA group, n = 3). The transfer procedure follows the medical rule of Taiwan that the upper limit of the number of the embryos being transferred is 4. These transfers achieved 8 pregnancies, and therefore the clinical pregnancy rate was 61.5 % (8/13) per cycle. However, one early abortion was noted and the ongoing pregnancy rate up to the second trimester was 53.8 % (7/13) per transfer cycle. There were no monozygotic twinning and a total of 11 sacs were noted. Three women who were transferred for 2 embryos in the Group B had singleton pregnancies, and two women who were transferred for 2 embryos in the Group B and 2 women who were transferred for 4 embryos in the Group A had dizygotic twin pregnancies (Additional file 1: Table S1). The sustained implantation rate was thus 39.3 % (11/28) per transferred fresh embryo (Table 1). Totally, there are 2 of 3 women in Group A had ongoing pregnancies. Six women in Group B had clinical pregnancies, and 5 of them had sustained ongoing pregnancies. There are no statistical significant differences noted between these two groups regarding aneuploidy (Chi square test, p = 0.094), clinical pregnancy (Fisher's exact test, p = 1), and ongoing pregnancy (Fisher's exact test, p = 1). Array CGH for the only abortion case revealed the karyotype was 46,XY. Table 1. Clinical outcomes of PGS by qPCR with fresh embryo transfer (FET) verification series Discussion The major difficulty of comprehensive chromosome screening (CCS) by qPCR for PGS is to devise a primer set to successfully amplify the molecular markers being selected in a single experiment by optimizing the conditions for melting temperatures and experimental time intervals. In this study we successfully adopted a smart design called LNA methodology [20], [22]–[24] for qPCR PGS and verified the strategy by achieving a favorable ongoing pregnancy rate of 53.8 %. We first validated the genotyping platform we devised by achieving an almost 100 % successful diagnosis rate (98.1 %), and then verified the whole protocol of qPCR PGS followed by FET. Since the sample size is small (n = 13 cycles), it is not surprising that we failed to observe significant difference regarding the aneuploidy rates between the AMA (n = 3) and the non-AMA group (n = 10) in our patients. Meanwhile, the aneuploidy rate in our series (38.9 %) is apparently much lower than the rates observed by 24-chromosome qPCR or array CGH (more than 60 %), which is obviously due to the fact that we only selected a limited set of common aneuploidies that can ensue live births in humans [14], [15]. It has been a routine practice in our settings that PGS by FISH at Day 3 cleavage-stage embryos since 2005 and it is ethical for us to offer our patients who opted for this alternative protocol a strategy which has an advantage of an established less detrimental effect upon implantation potential by changing the timing of biopsy from Day 3 to Day 5/6 and the same repertoire of common aneuploidies being tested (but simply using qPCR instead of FISH) to enable FET[9]. The reason only trisomy 13, 18, 21, and numerical disorders involving X and Y were tested in our settings is because these are the only aneuploidies that may result in live births in humans. For people who opted for this strategy and came to our clinics, their major concern is more focused at aneuploidies instead of live birth rates. In addition, it is well recognized that despite fewer embryos would be available for transfer if being cultured in vitro onto the blastocyst stage when compared with the cleavage-stage embryos, the disadvantage may be offset by the fact that the aneuploidy rate of the blastocysts is much lower than of the cleavage-stage embryos. An observational study had reported that karyotypic evolution did exist in early human embryogenesis, in which some cleavage stage embryos classified as aneuploidy by FISH eventually developed into euploid blastocysts if by SNP array[25]. A recent randomized study even pointed out that FISH-based PGS conferred advantages at women who are in the AMA group, but not in those with repeated implantation failures group, as long as the biopsy was performed at the blastocyst stage [5]. A recent randomized trial (the BEST trial) had demonstrated that qPCR PGS CCS followed by single embryo transfer (SET) can enhance the feasibility of SET by selecting a single euploid embryo with high reproductive potential without compromising the delivery rates when compared with transfer of two unselected embryos, which instead resulted in more multiple pregnancies and the associated complications such as preterm delivery, low birth weight, and NICU (Neonatal Intensive Care Unit) admission [26]. We admit our pilot verification study had suffered from the fact that only common aneuploidies of five chromosome pairs (13, 18, 21, X, and Y) were screened and apparently it is the reason that the implantation rate per embryo in our study (39.3 %) is much lower than that in the BEST trial (69 %) [26]. However, our patients were all informed consented and knew the disadvantage before joining the study, and the limitations of the local setting were clearly disclosed to the patients. The patients were free to choose another PGS protocol by array CGH (Option 2, please refer to Patients and methods section) instead. Conclusions The merit of our work is that this is the first effort from research groups other than the original group who proposed the qPCR CCS (Reproductive Medicine Associates of New Jersey, Morristown, NJ, USA) trying to validate and verify this novel genotyping platform which was developed in-house by ourselves. Despite our results did not have matched controls such as those cycles receiving IVF but without PGS, the ongoing pregnancy rate is similar to a previous PGD series from our setting (53.8 % versus 50 %, please refer to Chang et al., 2013 [27]), indicating this protocol is clinically feasible. Future efforts will be made upon expanding the repertoire of the PGS by qPCR CCS to all 24 chromosomes, as well as carefully-designed randomized controlled trials to compare this genotyping platform with others (including no-screening, array CGH, and NGS). Patients and methods Design and selection of molecular markers for qPCR PGS An in-house screening system by dual-color qPCR was developed with specific primers for the targeted loci (situated at chromosome 13, 18, 21, X, and Y) and one internal control locus (situated at chromosome 1, the reason we chose chromosome 1 as control is because it is the least found trisomy in humans, see Wang et al., 2014 [21]). A total of 16 targeted loci and one control locus were selected. For the detailed information about the targeted loci, please refer to Table 2. Specific primers for amplification of each locus were designed by using the software Oligo 6.71 (Molecular Biology Insights, Colorado, USA), and all primer sets are flanked on each side of the exon-intron boundary to avoid possible mRNA interference. The applications of LNA-modified probes are well-established for quantifying levels of gene expression with an advantage of reducing complexity [22], [24], but has not been applied to the detection of chromosomal copy number alterations. Two kinds of LNA-modified probes, labeled with FAM™ and HEX™ (Integrated DNA Technologies, Iowa, USA) at the 5’-end, were used for quantifying the genomic copy numbers of targeted loci and control. Table 2. Summary of the targeted regions for screening of common aneuploidies Validation of qPCR in detecting common aneuploidies Each 5 cells separated from the cell lines of known common aneuploidies (including trisomy 21, trisomy 13, trisomy 18, 47,XXY, and 45,X) were processed by cell lysis of proteinase K, and the products were subjected to a 50-μL reaction volume of multiplex nested-PCR amplication for 18 cycles using an Applied Biosystems Veriti thermal cycler (Life Technologies, California, USA), and then the PCR products were purified using Agencourt AMPure XP system (Beckman Coulter, California, USA). Dual color hydrolysis probe assays were performed in triplicate to normalize and simpify calculation and to evaluate chromosomal copies, using Lightcycler 480 probes Master (Roche, Mannheim, Germany), a 20-μL reaction volume, a 96-well plate, and a 7 Light Cycler 480 Real-Time PCR System, as recommended by the supplier (Roche, Mannheim, Germany). Each well contains a particular target, and a common control reaction. A unique method of the standard delta delta threshold cycle (ΔΔCp) method was used for relative quantification. In our experiments, the Cp variation of all HEX™ reactions obtained for each well of the same sample will be controlled and ranged in less than 0.2, indicating the test sample was evenly distributed to each well. Each chromosome-specific ΔCp was calculated from the Cp of the FAM™ reactions targeting a specific chromosome minus the control Cp of the HEX™ reactions targeting the chromosome 1 within the same well. The same process was applied to individually determine the ΔCp for each targeted chromosome of the test sample, including reference set of normal male cell lines [BCRC number: 08C0011, 08C0012, 08C0013, 08C0021 and 08C0025]. Each chromosome- specific ΔCp was then normalized to the average chromosome-specific ΔCp values derived from the same evaluation of the reference set, which had been confirmed by FISH method. The calibrated chromosome-specific ΔCp values were used to calculate fold change by considering the ΔΔCp values as the negative exponent of 2, as previously described [18], [23]. The methodology was designed to specifically identify whole-chromosome but not segmental aneuploidy. The flowchart and diagram of the in-house qPCR PGS system were illustrated in Fig. 1. This qPCR was capable of accurate aneuploidy screening in 4 h, which allowed rapid evaluation of the trophectoderm biopsies and therefore provided a feasible opportunity for subsequent FET. thumbnailFig. 1. The diagram of the in-house qPCR PGS system. The flowchart of (a) detection of common aneuploidies, and (b) signal normalization and data analysis Pre-clinical validation upon surplus frozen embryos Fifty-four thawed frozen embryos at blastocyst stage were biopsied and sent for qPCR and FISH analyses. These embryos were retrieved from the surplus frozen embryos of couples who already conceived and would be discarded if not being investigated for research purpose. In those embryos diagnosed with common chromosome aneuploidies, array CGH was used to confirm the diagnoses. Clinical verification for fresh embryos In our setting we used to offer two PGS protocols. One option (Option 1) is Day 3 biopsy followed by PGS with FISH and FET; the other option (Option 2) is Day 5/6 trophectoderm biopsy followed by PGS with array CGH and frozen embryo transfer (because array CGH takes time and FET was not feasible at the study period). Only patients who had history of failed IVF (without PGS) for at least once and who opted for Option 1 were given the chance of joining this study as an alternative. All patients chose to join this study were informed consented and their autonomy was fully respected. They could choose to withdraw from the study at any time during the study period and were fully aware of the alternatives, including sticking to Option 1 or instead chose Option 2 without joining the study. During July to October of 2014, 13 infertile couples were enrolled. Among these 13 patients, 3 of them had AMA (37, 43, 45 years old respectively). The mean age of the total 13 patients was 34.1 years. No confounding factors that may affect implantation such as immune aberrations (antiphospholipid antibody syndrome in the mother), balanced translocation carriers (in both couples), and thrombophilias (protein C/S/antithrombin III deficiency) existed in these couples when they were enrolled. Clinical pregnancy was defined as positive urine HCG. Ongoing pregnancy rate (per cycle) was defined as those pregnancies proceeding into second trimester (and for each embryo being transferred, sustained implantation rate was used). 13 couples were classified as those whose age is older or equal to 35 years (Group A), and those whose age is less than 35 years (Group B). Chi square test or Fisher’s exact test was used to compare the reproductive outcomes between the groups regarding the rate of aneuploidy, clinical pregnancy, and ongoing pregnancy. Notably according to the regulations of Taiwan government, the patients would not know the results of the fetal sex. Even in aneuploidies involving sex chromosomes (specifically 47,XXY and 45,X), the results would not be disclosed to patients and only “aneuploidy” would be told to the patients and the aneuploid embryos would not be selected for transfer. In those embryos diagnosed to have chromosomal aneuploidies by qPCR, array CGH was used to confirm the diagnoses. Abbreviations AMA: Advanced maternal age CCS: Comprehensive chromosome screening CGH: Comparative genomic hybridization FET: Fresh embryo transfer FISH: Fluorescence in situ hybridization IVF: in vitro fertilization LNA: Locked nucleic acid NGS: Next generation sequencing PGS: Preimplantation genetic screening qPCR: Quantitative real-time polymerase chain reaction SET: Single embryo transfer SNP: Single nucleotide polymorphism Competing interests The authors declare that they have no competing interests. Authors’ contributions YSY, HFC, SPC, FPT, MC designed the study. SPC, GCM, MC developed the novel in-house genotyping platform. SPC, GCM, WHL, CFL, MC did the experiments. YSY, HFC, FPT, CHW, HDT, MC recruited the patients. YSY, HFC, GCM, THL, MC analyzed the results. YSY, SPC, GCM, WHL, MC wrote the paper. All authors read and approved the final manuscript. Additional file Additional file 1: Table S1.. Summary of the pre-clinical validation (for 54 surplus frozen embryos) and clinical verification (for 13 patients with 54 embryos) of PGS by qPCR. Format: DOCX Size: 32KB Download fileOpen Data Acknowledgements This study is partly funded by a grant from Changhua Christian Hospital, Taiwan to Ming Chen (103-CCH-IST-006). The authors are grateful for the genuine support and advice from Dr. Shou-Jen Kuo, the Superintendent of Changhua Christian Hospital, who also participated in the development of the novel in-house qPCR CCS system. References Treff NR, Scott RT. Methods for comprehensive chromosome screening of oocytes and embryos: capabilities, limitations, and evidence of validity. J Assist Reprod Genet. 2012; 29(5):381-90.PubMed Abstract | Publisher Full Text OpenURL Harton GL, Munne S, Surrey M, Grifo J, Kaplan B, McCulloh DH et al..Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013; 100(6):1695-703. PubMed Abstract |Publisher Full Text OpenURL Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR et al.. In vitro fertilization with preimplantation genetic screening. New Engl J Med. 2007; 357(1):9-17. PubMed Abstract | Publisher Full Text OpenURL Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs.Hum Reprod Update. 2011; 17(4):454-66. PubMed Abstract |Publisher Full Text OpenURL Rubio C, Bellver J, Rodrigo L, Bosch E, Mercader A, Vidal C, et al. Preimplantation genetic screening using fluorescence in situ hybridization in patients with repetitive implantation failure and advanced maternal age: two randomized trials. Fertil Steril. 2013;99(5):1400–7.a Braude P. Selecting the 'best' embryos: prospects for improvement. Reprod Biomed Online. 2013; 27(6):244-53.Publisher Full Text OpenURL Mastenbroek S, Repping S. Preimplantation genetic screening: back to the future. Hum Reprod. 2014; 29(9):1846-50. PubMed Abstract |Publisher Full Text OpenURL Scott RT, Ferry K, Su J, Tao X, Scott K, Treff NR. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012; 97(4):870-5. PubMed Abstract |Publisher Full Text OpenURL Scott KL, Hong KH, Scott RT. Selecting the optimal time to perform biopsy for preimplantation genetic testing. Fertil Steril. 2013;100(3):608-14. PubMed Abstract | Publisher Full Text OpenURL Scott RT, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D et al..Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial.Fertil Steril. 2013; 100(3):697-703. PubMed Abstract |Publisher Full Text OpenURL Handyside AH. 24-chromosome copy number analysis: a comparison of available technologies. Fertil Steril. 2013;100(3):595-602. PubMed Abstract | Publisher Full Text OpenURL Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E, Cottone G et al..Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29(12):2802-13. PubMed Abstract | Publisher Full Text OpenURL Wells D, Kaur K, Grifo J, Glassner M, Taylor JC, Fragouli E et al.. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet. 2014; 51(8):553-62. PubMed Abstract |Publisher Full Text OpenURL Capalbo A, Treff NR, Cimadomo D, Tao X, Upham K, Ubaldi FM, et al. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies. Eu J Hum Genet. 2014;doi:10.1038/ejhg.2014.222(in press). Rubio C, Rhodrigo L, Mir P, Mateu E, Peinado V, Milan M, et al. Use of array comparative genomic hybridization (array-CGH) for embryo assessment: clinical results. Fertil Steril. 2013;99(4):1044–8.b Schoolcraft WB, Treff NR, Stevens JM, Ferry K, Katz-Jaffe M, Scott RT.Live birth outcome with trophectoderm biopsy, blastocyst vitrification, and single-nucleotide polymorphism microarray-based comprehensive chromosome screening in infertile patients.Fertil Steril. 2011; 96(3):638-40. PubMed Abstract | Publisher Full Text OpenURL Treff NR, Levy B, Su J, Northrop LE, Tao X, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH. Mol Hum Reprod. 2010; 16(8):583-9.PubMed Abstract | Publisher Full Text OpenURL Treff NR, Tao X, Ferry KM, Su J, Taylor D, Scott RT. Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril. 2012; 97(4):819-24. PubMed Abstract | Publisher Full Text OpenURL Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C et al..Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009; 15(5):577-83. PubMed Abstract |Publisher Full Text OpenURL Brunet E, Corgnali M, Cannata F, Perrouault L, Giovannangeli C.Targeting chromosomal sites with locked nucleic acid-modified triplex-forming oligonucleotides: study of efficiency dependence on DNA nuclear environment. Nucleic Acids Res. 2006; 34(16):4546-53. PubMed Abstract | Publisher Full Text OpenURL Wang BT, Chong TP, Boyar FZ, Kopita KA, Ross LP, El-Naggar MM et al..Abnormalities in spontaneous abortions detected by G-banding and chromosomal microarray analysis (CMA) at a national reference laboratory. Mol Cytogenet. 2014; 22:7-33. OpenURL Mouritzen P, Nielsen PS, Jacobsen N, Noerholmn M, Lomholt C, Pfundheller HM et al.. The ProbeLibrary—expression profiling 99 % of all human genes usingonly 90 dual-labeled real-time PCR probes. Biotechniques. 2004; 37:492-495. OpenURL Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008; 3:1101-8.PubMed Abstract | Publisher Full Text OpenURL Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S.OligoDesign: optimal design of LNA (lockednucleic acid) oligonucleotide capture probes for gene expression profiling.Nucleic Acids Res. 2003; 31:3758-62. PubMed Abstract |Publisher Full Text OpenURL Northrop LE, Treff NR, Levy B, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16(8):590-600. PubMed Abstract | Publisher Full Text OpenURL Forman EJ, Hong KH, Franasiak JM, Scott RT. Obstetrical and neonatal outcomes from the BEST Trial: single embryo transfer with aneuploidy screening improves outcomes after in vitro fertilization without compromising delivery rates. Am J Obstet Gynecol. 2014;210(2):157.e1-6. PubMed Abstract | Publisher Full Text OpenURL Chang LJ, Huang CC, Tsai YY, Hung CC, Fang MY, Lin YC et al..Blastocyst biopsy and vitrification are effective for preimplantation genetic diagnosis of monogenic diseases. Hum Reprod. 2013;28(5):1435-44. PubMed Abstract | Publisher Full Text OpenURL
|
(8) |
2015-09-30 |
發表的 《一條龍試管嬰兒qPCR》論文 被Molecular cytogenetics 是一個國際期刊拿來廣告對期刊有好的影響 在這封信裡 發表的論文高居第一名被下載的第一名 發表的qPCR論文 被Molecular cytogenetics 是一個國際 期刊拿來廣告對期刊有好的影響 在這封信裡 發表的論文高居第一名被下載的第一名 七月 發表的論文 被期刊拿來廣告 是最常被下載的論文之一 對期刊有好的影響 在這封信裡 發表的論文高居第一名 http://www.molecular cytogenetics.org/content/8/1/49 http://www.molecularcytogenetics.org/content/8/1/49 內置圖片 1內置圖片 2 內置圖片 4 內置圖片 1內置圖片 3內置圖片 2 BioMed Central news@info.biomedcentral.com 透過 bounce.news.springer.com 21:37 (9 小時前) 寄給 我 Dear Colleague, Below is a selection of the latest, highly accessed articles from the open access journal, Molecular Cytogenetics: - Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification - Partial tetrasomy of the proximal long arm of chromosome 15 in two patients: the significance of the gene dosage in terms of phenotype - Genes on B chromosomes of vertebrates Interested in publishing with BioMed Central? Here is what some of our previous authors say: “The reviews were really very good and the reviewers clearly well chosen. This alone would make us submit articles in future.” David Osrin, University College London “This is my first submission. Process has been very straightforward and all communication has been helpful and prompt.” Diane van Rooy, University of Sydney “ I enjoyed the process and felt it was quite efficient. The turn-around time for each step was very quick compared to other manuscript submission systems.” Mark Lazari, University of California, Los Angeles (UCLA) Try it for yourself, submit your manuscript today. Kind regards, BioMed Central BioMed Central Follow BioMed Central: Facebook Twitter LinkedIn YouTube Weibo How to ensure BioMed Central's emails reach your inbox. You have received this message in a belief that it would be of interest. If you would not like to receive any further messages from BioMed Central, please visit our general unsubscribe page. For further information or enquiries please contact Customer Services at: info@biomedcentral.com. BioMed Central Ltd, 236 Gray's Inn Road, London, WC1X 8HB, United Kingdom. Part of Springer Science+Business Media. Privacy Policy. Research Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification Yu-Shih Yang1†, Shun-Ping Chang2†, Hsin-Fu Chen13†, Gwo-Chin Ma24†, Wen-Hsiang Lin2, Chi-Fang Lin1, Feng-Po Tsai5, Cheng-Hsuan Wu6, Horng-Der Tsai6, Tsung-Hsien Lee17 and Ming Chen1268* *Corresponding author: Ming Chenmchen_cch@yahoo.com; mingchenmd@gmail.com † Equal contributors Author Affiliations 1 Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan 2 Department of Genomic Medicine, and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan 3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan 4 Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan 5 Poyuan Women Clinic, Changhua, Taiwan 6 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan 7 Department of Obstetrics and Gynecology, Chung-Shan Medical University, Taichung, Taiwan 8 Department of Life Sciences, Tunghai University, Taichung, Taiwan For all author emails, please log on. Molecular Cytogenetics 2015, 8:49 doi:10.1186/s13039-015-0140-9 Yu-Shih Yang, Shun-Ping Chang, Hsin-Fu Chen and Gwo-Chin Ma contributed equally to this work. The electronic version of this article is the complete one and can be found online at: http://www.molecularcytogenetics.org/content/8/1/49 Received: 11 February 2015 Accepted: 7 May 2015 Published: 8 July 2015 © 2015 Yang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Abstract Background Aneuploidy is an important etiology of implantation failure and quantitative real-time polymerase chain reaction (qPCR) seems a promising preimplantation genetic screening (PGS) technology to detect aneuploidies. This verification study aimed at verifying the impact on reproductive outcomes in in vitrofertilization (IVF) cycles using fresh embryo transfer (FET) in which the embryos were selected by blastocyst biopsy with qPCR-based PGS in our settings. Results A total of 13 infertile couples with more than once failed in vitro fertilization were enrolled during July to October of 2014. PGS was conducted by qPCR with selectively amplified markers to detect common aneuploidies (chromosomes 13, 18, 21, X, and Y). The design of the qPCR molecular markers adopted the locked nucleic acid (LNA) strategy. The blastocyst biopsy was performed on Day 5/6 and the PGS was done on the same day, which enabled FET. A total of 72 blastocysts were biopsied. Successful diagnoses were established in all embryos and the rate of successful diagnosis was 100 %. The aneuploidy rate was 38.9 % (28/72). 28 embryos were transferred. The clinical pregnancy rate was 61.5 % (8/13) per cycle. Early first trimester abortion was encountered in 1 and the ongoing pregnancy rate was 53.8 % (7/13) per cycle. Conclusion This study verified the favorable outcome of adopting PGS with qPCR + FET in our own setting. Expanding the repertoire of aneuploidies being investigated (from a limited set to all 24 chromosomes) is underway and a randomized study by comparing qPCR and other PGS technologies is warranted. Keywords: Aneuploidy; Blastocyst; Fresh embryo transfer; PGS; qPCR http://www.molecularcytogenetics.org/content/8/1/49 Research Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification Yu-Shih Yang1†, Shun-Ping Chang2†, Hsin-Fu Chen13†, Gwo-Chin Ma24†, Wen-Hsiang Lin2, Chi-Fang Lin1, Feng-Po Tsai5, Cheng-Hsuan Wu6, Horng-Der Tsai6, Tsung-Hsien Lee17 and Ming Chen1268* *Corresponding author: Ming Chenmchen_cch@yahoo.com; mingchenmd@gmail.com † Equal contributors Author Affiliations 1 Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan 2 Department of Genomic Medicine, and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan 3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan 4 Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan 5 Poyuan Women Clinic, Changhua, Taiwan 6 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan 7 Department of Obstetrics and Gynecology, Chung-Shan Medical University, Taichung, Taiwan 8 Department of Life Sciences, Tunghai University, Taichung, Taiwan For all author emails, please log on. Molecular Cytogenetics 2015, 8:49 doi:10.1186/s13039-015-0140-9 Yu-Shih Yang, Shun-Ping Chang, Hsin-Fu Chen and Gwo-Chin Ma contributed equally to this work. The electronic version of this article is the complete one and can be found online at: http://www.molecularcytogenetics.org/content/8/1/49 Received: 11 February 2015 Accepted: 7 May 2015 Published: 8 July 2015 © 2015 Yang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Abstract Background Aneuploidy is an important etiology of implantation failure and quantitative real-time polymerase chain reaction (qPCR) seems a promising preimplantation genetic screening (PGS) technology to detect aneuploidies. This verification study aimed at verifying the impact on reproductive outcomes in in vitrofertilization (IVF) cycles using fresh embryo transfer (FET) in which the embryos were selected by blastocyst biopsy with qPCR-based PGS in our settings. Results A total of 13 infertile couples with more than once failed in vitro fertilization were enrolled during July to October of 2014. PGS was conducted by qPCR with selectively amplified markers to detect common aneuploidies (chromosomes 13, 18, 21, X, and Y). The design of the qPCR molecular markers adopted the locked nucleic acid (LNA) strategy. The blastocyst biopsy was performed on Day 5/6 and the PGS was done on the same day, which enabled FET. A total of 72 blastocysts were biopsied. Successful diagnoses were established in all embryos and the rate of successful diagnosis was 100 %. The aneuploidy rate was 38.9 % (28/72). 28 embryos were transferred. The clinical pregnancy rate was 61.5 % (8/13) per cycle. Early first trimester abortion was encountered in 1 and the ongoing pregnancy rate was 53.8 % (7/13) per cycle. Conclusion This study verified the favorable outcome of adopting PGS with qPCR + FET in our own setting. Expanding the repertoire of aneuploidies being investigated (from a limited set to all 24 chromosomes) is underway and a randomized study by comparing qPCR and other PGS technologies is warranted. Keywords: Aneuploidy; Blastocyst; Fresh embryo transfer; PGS; qPCR Background Preimplantation genetic screening (PGS) by Day 3 cleavage stage embryo biopsy followed by examination with fluorescence in situ hybridization (FISH) was once popular strategy for women with advanced maternal age (AMA) [1]. This strategy was based upon an assumption that aneuploidy, which is associate with AMA, is an important factor for implantation failure and therefore such strategy can improve the reproductive outcome [2]. However, a famous randomized study published by Mastenbroek and colleagues reported that such FISH-based PGS with Day 3 biopsy did not confer advantages in women with AMA regarding the live-birth rates [3], and it is then called the “Mastenbroek controversy”. This unexpected finding was subsequently proved by many randomized controlled trials [4] except in one series [5]. Some other researchers thus proposed different strategies including adopting different timing of biopsy (trophectoderm biopsy versus cleavage-stage blastomere biopsy), different molecular technologies which can detect all 24 chromosomes instead of only a few selected chromosomes (which is a major limitation of FISH), and different timing of embryo transfer (fresh or frozen) [1], [6], [7]. Mounting evidences had suggested blastomere biopsy at Day 3 cleavage stage embryos does impair the implantation potential whereas trophectoderm biopsy at Day 5/6 blastocyst does not [8]–[10]. Meanwhile, it is straightforward that using more sophisticated molecular tools may select a better or “more normal” embryo. Competing technologies include array comparative genomic hybridization (CGH), single nucleotide polymorphism (SNP) array, quantitative real-time polymerase chain reaction (qPCR), and next generation sequencing (NGS) [11]. Amongst them, NGS remains to be mostly investigational because of the resources and cost of bioinformatics analyses [12], [13], and therefore the most feasible tools at the present seem to be qPCR and array-based technologies, including SNP array and array CGH [8], [14]–[18]. It is now known that mosaicism is a common phenomenon in early human embryo development, and therefore how to select the embryos with best implantation potential becomes a vital question [19]. It is shown by the research groups who proposed for qPCR that qPCR is superior to array CGH since it enjoys a lower false-positive rate for aneuploidy detection (0 % for qPCR and 5.4 % for array CGH in 122 embryos analyzed), and thereby preserving more embryos available for transfer and ensues a better reproductive outcome [14]. There are now commercially available PGS platforms using array CGH in the market (such as those produced by BlueGnome, UK) and has become very popular because of the feasibility of an easy-to-use system, especially for in vitro fertilization (IVF) centers without a genetic lab as a supporting resort [11]. However, since the outcomes achieved by the team proposing qPCR are compellingly excellent. It thus poses stress upon researchers of the similar field to verify qPCR as a replacement or an alternative to the current popular PGS by array CGH platforms [14]. In this small verification study, we aimed to assess the PGS by qPCR strategy coupled with trophectoderm biopsy at Day 5/6 blastocyst stage. In the initial stage we first verified qPCR only at selected common aneuploidies including chromosome 13, 18, 21, X, and Y (these aneuploidies can be confirmed by FISH). The reasons we assessed only selected chromosomes are three: First, the detail design and experimental conditions regarding qPCR on all 24 chromosomes are patent protected and we need staged efforts to devise and validate our own. Therefore, in this study we adopted a method called locked nucleic acid (LNA) technology to design our qPCR platform [20]; Second, for a rapid overnight diagnosis which is warranted for fresh embryo transfer (FET), it takes a qPCR machine with a 384-well for only one embryo [18], which may not be feasible in real settings in most genetic labs; Third, we believe the “Mastenbroek controversy” may result not only from lacking an effective genotyping system to screen a “better” embryo, but also from the proven impairment of the implantation potential when biopsy at Day 3 cleavage stage embryos [3], [4], [6]. The team proposing qPCR in one hand arguing qPCR is better than FISH because it can examine all 24 chromosomes but in the other hand claiming despite array CGH should have a better resolution than qPCR whereas implying array CGH is “too sensitive” since it has a more false-positive rate when SNP array is used as a gold standard [14], [16], [18]. We thus are interested to know if it is feasible by using a limited qPCR strategy with examination of only selected common aneuploidies (similar to FISH) coupled with trophectoderm biopsy of Day 5/6 blastocyst stage embryos can still achieve a favorable reproductive outcome. It is ethical since it is by theory better than the trial protocol reported in the “Mastenbroek controversy” trial [3], in which a similar number of aneuploidies was assessed by FISH but the biopsy timing was set at Day 3 (when cleavage-stage embryos), a timing now being recognized to be inferior to Day 5/6 blastocyst stage regarding the implantation potential [9]. After the feasibility is confirmed in our setting, it is then justified to expand the repertoire of aneuploidies to 9 chromosomes (13, 15, 16, 17, 18, 21, 22, X and Y. See Rubio et al., 2013 a[5]), or 11 chromosomes (7, 9, 11, 13, 14, 15, 18, 21, 22, X and Y. These are the most commonly found trisomies at abortus. See Wang et al., 2014 [21]) and eventually to 24 chromosomes (1–22, X and Y. See Treff et al., 2012 [1]) in the future. Results Pre-clinical validation Pre-clinical validation for the PGS by qPCR was performed on 54 surplus frozen embryos (Additional file 1: Table S1). Fifty-three of these embryos were successfully diagnosed and the successful diagnostic rate was 98.1 % (53/54). Twenty-four embryos were found to carry aneuploidy on tested chromosomes and the rate of aneuploidy was thus 44.4 % (24/53). The only embryo failed to provide a confirmed diagnosis showed poor qPCR signal, possibly due to a low amount of or degraded DNA in the biopsied sample. FISH diagnosis for that embryo was negative for numerical disorders involving chromosome 13, 18, 21, X, and Y. The remaining cells of this biopsied embryo were sent for array CGH and the diagnosis was trisomy 22. Clinical verification A total of 72 embryos at Day 5/6 blastocyst stage from 13 patients were biopsied and assessed, and all (100 %) of them were successfully diagnosed (Table 1 and Additional file 1: Table S1). Twenty-eight (38.9 %) of these embryos were aneuploid, which included 4 monosomy 13, 5 monosomy 21, 7 trisomy 13, 1 trisomy 18, 9 trisomy 21, 1 monosomy 13 + trisomy 18, and 1 monosomy 18 + monosomy 21. The remaining 44 (61.1 %) embryos were euploidy, of which 28 were transferred into the 13 patients in 13 cycles. The average number of the embryos being transferred is 2.15, actually only 1–2 embryos were transferred in all women of the Group B (non-AMA group, n = 10). The only 2 women who were transferred for 4 embryos are both in the Group A (AMA group, n = 3). The transfer procedure follows the medical rule of Taiwan that the upper limit of the number of the embryos being transferred is 4. These transfers achieved 8 pregnancies, and therefore the clinical pregnancy rate was 61.5 % (8/13) per cycle. However, one early abortion was noted and the ongoing pregnancy rate up to the second trimester was 53.8 % (7/13) per transfer cycle. There were no monozygotic twinning and a total of 11 sacs were noted. Three women who were transferred for 2 embryos in the Group B had singleton pregnancies, and two women who were transferred for 2 embryos in the Group B and 2 women who were transferred for 4 embryos in the Group A had dizygotic twin pregnancies (Additional file 1: Table S1). The sustained implantation rate was thus 39.3 % (11/28) per transferred fresh embryo (Table 1). Totally, there are 2 of 3 women in Group A had ongoing pregnancies. Six women in Group B had clinical pregnancies, and 5 of them had sustained ongoing pregnancies. There are no statistical significant differences noted between these two groups regarding aneuploidy (Chi square test, p = 0.094), clinical pregnancy (Fisher's exact test, p = 1), and ongoing pregnancy (Fisher's exact test, p = 1). Array CGH for the only abortion case revealed the karyotype was 46,XY. Table 1. Clinical outcomes of PGS by qPCR with fresh embryo transfer (FET) verification series Discussion The major difficulty of comprehensive chromosome screening (CCS) by qPCR for PGS is to devise a primer set to successfully amplify the molecular markers being selected in a single experiment by optimizing the conditions for melting temperatures and experimental time intervals. In this study we successfully adopted a smart design called LNA methodology [20], [22]–[24] for qPCR PGS and verified the strategy by achieving a favorable ongoing pregnancy rate of 53.8 %. We first validated the genotyping platform we devised by achieving an almost 100 % successful diagnosis rate (98.1 %), and then verified the whole protocol of qPCR PGS followed by FET. Since the sample size is small (n = 13 cycles), it is not surprising that we failed to observe significant difference regarding the aneuploidy rates between the AMA (n = 3) and the non-AMA group (n = 10) in our patients. Meanwhile, the aneuploidy rate in our series (38.9 %) is apparently much lower than the rates observed by 24-chromosome qPCR or array CGH (more than 60 %), which is obviously due to the fact that we only selected a limited set of common aneuploidies that can ensue live births in humans [14], [15]. It has been a routine practice in our settings that PGS by FISH at Day 3 cleavage-stage embryos since 2005 and it is ethical for us to offer our patients who opted for this alternative protocol a strategy which has an advantage of an established less detrimental effect upon implantation potential by changing the timing of biopsy from Day 3 to Day 5/6 and the same repertoire of common aneuploidies being tested (but simply using qPCR instead of FISH) to enable FET[9]. The reason only trisomy 13, 18, 21, and numerical disorders involving X and Y were tested in our settings is because these are the only aneuploidies that may result in live births in humans. For people who opted for this strategy and came to our clinics, their major concern is more focused at aneuploidies instead of live birth rates. In addition, it is well recognized that despite fewer embryos would be available for transfer if being cultured in vitro onto the blastocyst stage when compared with the cleavage-stage embryos, the disadvantage may be offset by the fact that the aneuploidy rate of the blastocysts is much lower than of the cleavage-stage embryos. An observational study had reported that karyotypic evolution did exist in early human embryogenesis, in which some cleavage stage embryos classified as aneuploidy by FISH eventually developed into euploid blastocysts if by SNP array[25]. A recent randomized study even pointed out that FISH-based PGS conferred advantages at women who are in the AMA group, but not in those with repeated implantation failures group, as long as the biopsy was performed at the blastocyst stage [5]. A recent randomized trial (the BEST trial) had demonstrated that qPCR PGS CCS followed by single embryo transfer (SET) can enhance the feasibility of SET by selecting a single euploid embryo with high reproductive potential without compromising the delivery rates when compared with transfer of two unselected embryos, which instead resulted in more multiple pregnancies and the associated complications such as preterm delivery, low birth weight, and NICU (Neonatal Intensive Care Unit) admission [26]. We admit our pilot verification study had suffered from the fact that only common aneuploidies of five chromosome pairs (13, 18, 21, X, and Y) were screened and apparently it is the reason that the implantation rate per embryo in our study (39.3 %) is much lower than that in the BEST trial (69 %) [26]. However, our patients were all informed consented and knew the disadvantage before joining the study, and the limitations of the local setting were clearly disclosed to the patients. The patients were free to choose another PGS protocol by array CGH (Option 2, please refer to Patients and methods section) instead. Conclusions The merit of our work is that this is the first effort from research groups other than the original group who proposed the qPCR CCS (Reproductive Medicine Associates of New Jersey, Morristown, NJ, USA) trying to validate and verify this novel genotyping platform which was developed in-house by ourselves. Despite our results did not have matched controls such as those cycles receiving IVF but without PGS, the ongoing pregnancy rate is similar to a previous PGD series from our setting (53.8 % versus 50 %, please refer to Chang et al., 2013 [27]), indicating this protocol is clinically feasible. Future efforts will be made upon expanding the repertoire of the PGS by qPCR CCS to all 24 chromosomes, as well as carefully-designed randomized controlled trials to compare this genotyping platform with others (including no-screening, array CGH, and NGS). Patients and methods Design and selection of molecular markers for qPCR PGS An in-house screening system by dual-color qPCR was developed with specific primers for the targeted loci (situated at chromosome 13, 18, 21, X, and Y) and one internal control locus (situated at chromosome 1, the reason we chose chromosome 1 as control is because it is the least found trisomy in humans, see Wang et al., 2014 [21]). A total of 16 targeted loci and one control locus were selected. For the detailed information about the targeted loci, please refer to Table 2. Specific primers for amplification of each locus were designed by using the software Oligo 6.71 (Molecular Biology Insights, Colorado, USA), and all primer sets are flanked on each side of the exon-intron boundary to avoid possible mRNA interference. The applications of LNA-modified probes are well-established for quantifying levels of gene expression with an advantage of reducing complexity [22], [24], but has not been applied to the detection of chromosomal copy number alterations. Two kinds of LNA-modified probes, labeled with FAM™ and HEX™ (Integrated DNA Technologies, Iowa, USA) at the 5’-end, were used for quantifying the genomic copy numbers of targeted loci and control. Table 2. Summary of the targeted regions for screening of common aneuploidies Validation of qPCR in detecting common aneuploidies Each 5 cells separated from the cell lines of known common aneuploidies (including trisomy 21, trisomy 13, trisomy 18, 47,XXY, and 45,X) were processed by cell lysis of proteinase K, and the products were subjected to a 50-μL reaction volume of multiplex nested-PCR amplication for 18 cycles using an Applied Biosystems Veriti thermal cycler (Life Technologies, California, USA), and then the PCR products were purified using Agencourt AMPure XP system (Beckman Coulter, California, USA). Dual color hydrolysis probe assays were performed in triplicate to normalize and simpify calculation and to evaluate chromosomal copies, using Lightcycler 480 probes Master (Roche, Mannheim, Germany), a 20-μL reaction volume, a 96-well plate, and a 7 Light Cycler 480 Real-Time PCR System, as recommended by the supplier (Roche, Mannheim, Germany). Each well contains a particular target, and a common control reaction. A unique method of the standard delta delta threshold cycle (ΔΔCp) method was used for relative quantification. In our experiments, the Cp variation of all HEX™ reactions obtained for each well of the same sample will be controlled and ranged in less than 0.2, indicating the test sample was evenly distributed to each well. Each chromosome-specific ΔCp was calculated from the Cp of the FAM™ reactions targeting a specific chromosome minus the control Cp of the HEX™ reactions targeting the chromosome 1 within the same well. The same process was applied to individually determine the ΔCp for each targeted chromosome of the test sample, including reference set of normal male cell lines [BCRC number: 08C0011, 08C0012, 08C0013, 08C0021 and 08C0025]. Each chromosome- specific ΔCp was then normalized to the average chromosome-specific ΔCp values derived from the same evaluation of the reference set, which had been confirmed by FISH method. The calibrated chromosome-specific ΔCp values were used to calculate fold change by considering the ΔΔCp values as the negative exponent of 2, as previously described [18], [23]. The methodology was designed to specifically identify whole-chromosome but not segmental aneuploidy. The flowchart and diagram of the in-house qPCR PGS system were illustrated in Fig. 1. This qPCR was capable of accurate aneuploidy screening in 4 h, which allowed rapid evaluation of the trophectoderm biopsies and therefore provided a feasible opportunity for subsequent FET. thumbnailFig. 1. The diagram of the in-house qPCR PGS system. The flowchart of (a) detection of common aneuploidies, and (b) signal normalization and data analysis Pre-clinical validation upon surplus frozen embryos Fifty-four thawed frozen embryos at blastocyst stage were biopsied and sent for qPCR and FISH analyses. These embryos were retrieved from the surplus frozen embryos of couples who already conceived and would be discarded if not being investigated for research purpose. In those embryos diagnosed with common chromosome aneuploidies, array CGH was used to confirm the diagnoses. Clinical verification for fresh embryos In our setting we used to offer two PGS protocols. One option (Option 1) is Day 3 biopsy followed by PGS with FISH and FET; the other option (Option 2) is Day 5/6 trophectoderm biopsy followed by PGS with array CGH and frozen embryo transfer (because array CGH takes time and FET was not feasible at the study period). Only patients who had history of failed IVF (without PGS) for at least once and who opted for Option 1 were given the chance of joining this study as an alternative. All patients chose to join this study were informed consented and their autonomy was fully respected. They could choose to withdraw from the study at any time during the study period and were fully aware of the alternatives, including sticking to Option 1 or instead chose Option 2 without joining the study. During July to October of 2014, 13 infertile couples were enrolled. Among these 13 patients, 3 of them had AMA (37, 43, 45 years old respectively). The mean age of the total 13 patients was 34.1 years. No confounding factors that may affect implantation such as immune aberrations (antiphospholipid antibody syndrome in the mother), balanced translocation carriers (in both couples), and thrombophilias (protein C/S/antithrombin III deficiency) existed in these couples when they were enrolled. Clinical pregnancy was defined as positive urine HCG. Ongoing pregnancy rate (per cycle) was defined as those pregnancies proceeding into second trimester (and for each embryo being transferred, sustained implantation rate was used). 13 couples were classified as those whose age is older or equal to 35 years (Group A), and those whose age is less than 35 years (Group B). Chi square test or Fisher’s exact test was used to compare the reproductive outcomes between the groups regarding the rate of aneuploidy, clinical pregnancy, and ongoing pregnancy. Notably according to the regulations of Taiwan government, the patients would not know the results of the fetal sex. Even in aneuploidies involving sex chromosomes (specifically 47,XXY and 45,X), the results would not be disclosed to patients and only “aneuploidy” would be told to the patients and the aneuploid embryos would not be selected for transfer. In those embryos diagnosed to have chromosomal aneuploidies by qPCR, array CGH was used to confirm the diagnoses. Abbreviations AMA: Advanced maternal age CCS: Comprehensive chromosome screening CGH: Comparative genomic hybridization FET: Fresh embryo transfer FISH: Fluorescence in situ hybridization IVF: in vitro fertilization LNA: Locked nucleic acid NGS: Next generation sequencing PGS: Preimplantation genetic screening qPCR: Quantitative real-time polymerase chain reaction SET: Single embryo transfer SNP: Single nucleotide polymorphism Competing interests The authors declare that they have no competing interests. Authors’ contributions YSY, HFC, SPC, FPT, MC designed the study. SPC, GCM, MC developed the novel in-house genotyping platform. SPC, GCM, WHL, CFL, MC did the experiments. YSY, HFC, FPT, CHW, HDT, MC recruited the patients. YSY, HFC, GCM, THL, MC analyzed the results. YSY, SPC, GCM, WHL, MC wrote the paper. All authors read and approved the final manuscript. Additional file Additional file 1: Table S1.. Summary of the pre-clinical validation (for 54 surplus frozen embryos) and clinical verification (for 13 patients with 54 embryos) of PGS by qPCR. Format: DOCX Size: 32KB Download fileOpen Data Acknowledgements This study is partly funded by a grant from Changhua Christian Hospital, Taiwan to Ming Chen (103-CCH-IST-006). The authors are grateful for the genuine support and advice from Dr. Shou-Jen Kuo, the Superintendent of Changhua Christian Hospital, who also participated in the development of the novel in-house qPCR CCS system. References Treff NR, Scott RT. Methods for comprehensive chromosome screening of oocytes and embryos: capabilities, limitations, and evidence of validity. J Assist Reprod Genet. 2012; 29(5):381-90.PubMed Abstract | Publisher Full Text OpenURL Harton GL, Munne S, Surrey M, Grifo J, Kaplan B, McCulloh DH et al..Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013; 100(6):1695-703. PubMed Abstract |Publisher Full Text OpenURL Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR et al.. In vitro fertilization with preimplantation genetic screening. New Engl J Med. 2007; 357(1):9-17. PubMed Abstract | Publisher Full Text OpenURL Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs.Hum Reprod Update. 2011; 17(4):454-66. PubMed Abstract |Publisher Full Text OpenURL Rubio C, Bellver J, Rodrigo L, Bosch E, Mercader A, Vidal C, et al. Preimplantation genetic screening using fluorescence in situ hybridization in patients with repetitive implantation failure and advanced maternal age: two randomized trials. Fertil Steril. 2013;99(5):1400–7.a Braude P. Selecting the 'best' embryos: prospects for improvement. Reprod Biomed Online. 2013; 27(6):244-53.Publisher Full Text OpenURL Mastenbroek S, Repping S. Preimplantation genetic screening: back to the future. Hum Reprod. 2014; 29(9):1846-50. PubMed Abstract |Publisher Full Text OpenURL Scott RT, Ferry K, Su J, Tao X, Scott K, Treff NR. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012; 97(4):870-5. PubMed Abstract |Publisher Full Text OpenURL Scott KL, Hong KH, Scott RT. Selecting the optimal time to perform biopsy for preimplantation genetic testing. Fertil Steril. 2013;100(3):608-14. PubMed Abstract | Publisher Full Text OpenURL Scott RT, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D et al..Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial.Fertil Steril. 2013; 100(3):697-703. PubMed Abstract |Publisher Full Text OpenURL Handyside AH. 24-chromosome copy number analysis: a comparison of available technologies. Fertil Steril. 2013;100(3):595-602. PubMed Abstract | Publisher Full Text OpenURL Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E, Cottone G et al..Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29(12):2802-13. PubMed Abstract | Publisher Full Text OpenURL Wells D, Kaur K, Grifo J, Glassner M, Taylor JC, Fragouli E et al.. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet. 2014; 51(8):553-62. PubMed Abstract |Publisher Full Text OpenURL Capalbo A, Treff NR, Cimadomo D, Tao X, Upham K, Ubaldi FM, et al. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies. Eu J Hum Genet. 2014;doi:10.1038/ejhg.2014.222(in press). Rubio C, Rhodrigo L, Mir P, Mateu E, Peinado V, Milan M, et al. Use of array comparative genomic hybridization (array-CGH) for embryo assessment: clinical results. Fertil Steril. 2013;99(4):1044–8.b Schoolcraft WB, Treff NR, Stevens JM, Ferry K, Katz-Jaffe M, Scott RT.Live birth outcome with trophectoderm biopsy, blastocyst vitrification, and single-nucleotide polymorphism microarray-based comprehensive chromosome screening in infertile patients.Fertil Steril. 2011; 96(3):638-40. PubMed Abstract | Publisher Full Text OpenURL Treff NR, Levy B, Su J, Northrop LE, Tao X, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH. Mol Hum Reprod. 2010; 16(8):583-9.PubMed Abstract | Publisher Full Text OpenURL Treff NR, Tao X, Ferry KM, Su J, Taylor D, Scott RT. Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril. 2012; 97(4):819-24. PubMed Abstract | Publisher Full Text OpenURL Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C et al..Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009; 15(5):577-83. PubMed Abstract |Publisher Full Text OpenURL Brunet E, Corgnali M, Cannata F, Perrouault L, Giovannangeli C.Targeting chromosomal sites with locked nucleic acid-modified triplex-forming oligonucleotides: study of efficiency dependence on DNA nuclear environment. Nucleic Acids Res. 2006; 34(16):4546-53. PubMed Abstract | Publisher Full Text OpenURL Wang BT, Chong TP, Boyar FZ, Kopita KA, Ross LP, El-Naggar MM et al..Abnormalities in spontaneous abortions detected by G-banding and chromosomal microarray analysis (CMA) at a national reference laboratory. Mol Cytogenet. 2014; 22:7-33. OpenURL Mouritzen P, Nielsen PS, Jacobsen N, Noerholmn M, Lomholt C, Pfundheller HM et al.. The ProbeLibrary—expression profiling 99 % of all human genes usingonly 90 dual-labeled real-time PCR probes. Biotechniques. 2004; 37:492-495. OpenURL Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008; 3:1101-8.PubMed Abstract | Publisher Full Text OpenURL Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S.OligoDesign: optimal design of LNA (lockednucleic acid) oligonucleotide capture probes for gene expression profiling.Nucleic Acids Res. 2003; 31:3758-62. PubMed Abstract |Publisher Full Text OpenURL Northrop LE, Treff NR, Levy B, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16(8):590-600. PubMed Abstract | Publisher Full Text OpenURL Forman EJ, Hong KH, Franasiak JM, Scott RT. Obstetrical and neonatal outcomes from the BEST Trial: single embryo transfer with aneuploidy screening improves outcomes after in vitro fertilization without compromising delivery rates. Am J Obstet Gynecol. 2014;210(2):157.e1-6. PubMed Abstract | Publisher Full Text OpenURL Chang LJ, Huang CC, Tsai YY, Hung CC, Fang MY, Lin YC et al..Blastocyst biopsy and vitrification are effective for preimplantation genetic diagnosis of monogenic diseases. Hum Reprod. 2013;28(5):1435-44. PubMed Abstract | Publisher Full Text OpenURL
|
(3) |
2015-09-30 |
發表的 《一條龍試管嬰兒qPCR》論文 被Molecular cytogenetics 是一個國際期刊拿來廣告對期刊有好的影響 在這封信裡 發表的論文高居第一名被下載的第一名 發表的qPCR論文 被Molecular cytogenetics 是一個國際 期刊拿來廣告對期刊有好的影響 在這封信裡 發表的論文高居第一名被下載的第一名 七月 發表的論文 被期刊拿來廣告 是最常被下載的論文之一 對期刊有好的影響 在這封信裡 發表的論文高居第一名 http://www.molecular cytogenetics.org/content/8/1/49 http://www.molecularcytogenetics.org/content/8/1/49 內置圖片 1內置圖片 2 內置圖片 4 內置圖片 1內置圖片 3內置圖片 2 BioMed Central news@info.biomedcentral.com 透過 bounce.news.springer.com 21:37 (9 小時前) 寄給 我 Dear Colleague, Below is a selection of the latest, highly accessed articles from the open access journal, Molecular Cytogenetics: - Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification - Partial tetrasomy of the proximal long arm of chromosome 15 in two patients: the significance of the gene dosage in terms of phenotype - Genes on B chromosomes of vertebrates Interested in publishing with BioMed Central? Here is what some of our previous authors say: “The reviews were really very good and the reviewers clearly well chosen. This alone would make us submit articles in future.” David Osrin, University College London “This is my first submission. Process has been very straightforward and all communication has been helpful and prompt.” Diane van Rooy, University of Sydney “ I enjoyed the process and felt it was quite efficient. The turn-around time for each step was very quick compared to other manuscript submission systems.” Mark Lazari, University of California, Los Angeles (UCLA) Try it for yourself, submit your manuscript today. Kind regards, BioMed Central BioMed Central Follow BioMed Central: Facebook Twitter LinkedIn YouTube Weibo How to ensure BioMed Central's emails reach your inbox. You have received this message in a belief that it would be of interest. If you would not like to receive any further messages from BioMed Central, please visit our general unsubscribe page. For further information or enquiries please contact Customer Services at: info@biomedcentral.com. BioMed Central Ltd, 236 Gray's Inn Road, London, WC1X 8HB, United Kingdom. Part of Springer Science+Business Media. Privacy Policy. Research Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification Yu-Shih Yang1†, Shun-Ping Chang2†, Hsin-Fu Chen13†, Gwo-Chin Ma24†, Wen-Hsiang Lin2, Chi-Fang Lin1, Feng-Po Tsai5, Cheng-Hsuan Wu6, Horng-Der Tsai6, Tsung-Hsien Lee17 and Ming Chen1268* *Corresponding author: Ming Chenmchen_cch@yahoo.com; mingchenmd@gmail.com † Equal contributors Author Affiliations 1 Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan 2 Department of Genomic Medicine, and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan 3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan 4 Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan 5 Poyuan Women Clinic, Changhua, Taiwan 6 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan 7 Department of Obstetrics and Gynecology, Chung-Shan Medical University, Taichung, Taiwan 8 Department of Life Sciences, Tunghai University, Taichung, Taiwan For all author emails, please log on. Molecular Cytogenetics 2015, 8:49 doi:10.1186/s13039-015-0140-9 Yu-Shih Yang, Shun-Ping Chang, Hsin-Fu Chen and Gwo-Chin Ma contributed equally to this work. The electronic version of this article is the complete one and can be found online at: http://www.molecularcytogenetics.org/content/8/1/49 Received: 11 February 2015 Accepted: 7 May 2015 Published: 8 July 2015 © 2015 Yang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Abstract Background Aneuploidy is an important etiology of implantation failure and quantitative real-time polymerase chain reaction (qPCR) seems a promising preimplantation genetic screening (PGS) technology to detect aneuploidies. This verification study aimed at verifying the impact on reproductive outcomes in in vitrofertilization (IVF) cycles using fresh embryo transfer (FET) in which the embryos were selected by blastocyst biopsy with qPCR-based PGS in our settings. Results A total of 13 infertile couples with more than once failed in vitro fertilization were enrolled during July to October of 2014. PGS was conducted by qPCR with selectively amplified markers to detect common aneuploidies (chromosomes 13, 18, 21, X, and Y). The design of the qPCR molecular markers adopted the locked nucleic acid (LNA) strategy. The blastocyst biopsy was performed on Day 5/6 and the PGS was done on the same day, which enabled FET. A total of 72 blastocysts were biopsied. Successful diagnoses were established in all embryos and the rate of successful diagnosis was 100 %. The aneuploidy rate was 38.9 % (28/72). 28 embryos were transferred. The clinical pregnancy rate was 61.5 % (8/13) per cycle. Early first trimester abortion was encountered in 1 and the ongoing pregnancy rate was 53.8 % (7/13) per cycle. Conclusion This study verified the favorable outcome of adopting PGS with qPCR + FET in our own setting. Expanding the repertoire of aneuploidies being investigated (from a limited set to all 24 chromosomes) is underway and a randomized study by comparing qPCR and other PGS technologies is warranted. Keywords: Aneuploidy; Blastocyst; Fresh embryo transfer; PGS; qPCR http://www.molecularcytogenetics.org/content/8/1/49 Research Preimplantation genetic screening of blastocysts by multiplex qPCR followed by fresh embryo transfer: validation and verification Yu-Shih Yang1†, Shun-Ping Chang2†, Hsin-Fu Chen13†, Gwo-Chin Ma24†, Wen-Hsiang Lin2, Chi-Fang Lin1, Feng-Po Tsai5, Cheng-Hsuan Wu6, Horng-Der Tsai6, Tsung-Hsien Lee17 and Ming Chen1268* *Corresponding author: Ming Chenmchen_cch@yahoo.com; mingchenmd@gmail.com † Equal contributors Author Affiliations 1 Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan 2 Department of Genomic Medicine, and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan 3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan 4 Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan 5 Poyuan Women Clinic, Changhua, Taiwan 6 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan 7 Department of Obstetrics and Gynecology, Chung-Shan Medical University, Taichung, Taiwan 8 Department of Life Sciences, Tunghai University, Taichung, Taiwan For all author emails, please log on. Molecular Cytogenetics 2015, 8:49 doi:10.1186/s13039-015-0140-9 Yu-Shih Yang, Shun-Ping Chang, Hsin-Fu Chen and Gwo-Chin Ma contributed equally to this work. The electronic version of this article is the complete one and can be found online at: http://www.molecularcytogenetics.org/content/8/1/49 Received: 11 February 2015 Accepted: 7 May 2015 Published: 8 July 2015 © 2015 Yang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Abstract Background Aneuploidy is an important etiology of implantation failure and quantitative real-time polymerase chain reaction (qPCR) seems a promising preimplantation genetic screening (PGS) technology to detect aneuploidies. This verification study aimed at verifying the impact on reproductive outcomes in in vitrofertilization (IVF) cycles using fresh embryo transfer (FET) in which the embryos were selected by blastocyst biopsy with qPCR-based PGS in our settings. Results A total of 13 infertile couples with more than once failed in vitro fertilization were enrolled during July to October of 2014. PGS was conducted by qPCR with selectively amplified markers to detect common aneuploidies (chromosomes 13, 18, 21, X, and Y). The design of the qPCR molecular markers adopted the locked nucleic acid (LNA) strategy. The blastocyst biopsy was performed on Day 5/6 and the PGS was done on the same day, which enabled FET. A total of 72 blastocysts were biopsied. Successful diagnoses were established in all embryos and the rate of successful diagnosis was 100 %. The aneuploidy rate was 38.9 % (28/72). 28 embryos were transferred. The clinical pregnancy rate was 61.5 % (8/13) per cycle. Early first trimester abortion was encountered in 1 and the ongoing pregnancy rate was 53.8 % (7/13) per cycle. Conclusion This study verified the favorable outcome of adopting PGS with qPCR + FET in our own setting. Expanding the repertoire of aneuploidies being investigated (from a limited set to all 24 chromosomes) is underway and a randomized study by comparing qPCR and other PGS technologies is warranted. Keywords: Aneuploidy; Blastocyst; Fresh embryo transfer; PGS; qPCR Background Preimplantation genetic screening (PGS) by Day 3 cleavage stage embryo biopsy followed by examination with fluorescence in situ hybridization (FISH) was once popular strategy for women with advanced maternal age (AMA) [1]. This strategy was based upon an assumption that aneuploidy, which is associate with AMA, is an important factor for implantation failure and therefore such strategy can improve the reproductive outcome [2]. However, a famous randomized study published by Mastenbroek and colleagues reported that such FISH-based PGS with Day 3 biopsy did not confer advantages in women with AMA regarding the live-birth rates [3], and it is then called the “Mastenbroek controversy”. This unexpected finding was subsequently proved by many randomized controlled trials [4] except in one series [5]. Some other researchers thus proposed different strategies including adopting different timing of biopsy (trophectoderm biopsy versus cleavage-stage blastomere biopsy), different molecular technologies which can detect all 24 chromosomes instead of only a few selected chromosomes (which is a major limitation of FISH), and different timing of embryo transfer (fresh or frozen) [1], [6], [7]. Mounting evidences had suggested blastomere biopsy at Day 3 cleavage stage embryos does impair the implantation potential whereas trophectoderm biopsy at Day 5/6 blastocyst does not [8]–[10]. Meanwhile, it is straightforward that using more sophisticated molecular tools may select a better or “more normal” embryo. Competing technologies include array comparative genomic hybridization (CGH), single nucleotide polymorphism (SNP) array, quantitative real-time polymerase chain reaction (qPCR), and next generation sequencing (NGS) [11]. Amongst them, NGS remains to be mostly investigational because of the resources and cost of bioinformatics analyses [12], [13], and therefore the most feasible tools at the present seem to be qPCR and array-based technologies, including SNP array and array CGH [8], [14]–[18]. It is now known that mosaicism is a common phenomenon in early human embryo development, and therefore how to select the embryos with best implantation potential becomes a vital question [19]. It is shown by the research groups who proposed for qPCR that qPCR is superior to array CGH since it enjoys a lower false-positive rate for aneuploidy detection (0 % for qPCR and 5.4 % for array CGH in 122 embryos analyzed), and thereby preserving more embryos available for transfer and ensues a better reproductive outcome [14]. There are now commercially available PGS platforms using array CGH in the market (such as those produced by BlueGnome, UK) and has become very popular because of the feasibility of an easy-to-use system, especially for in vitro fertilization (IVF) centers without a genetic lab as a supporting resort [11]. However, since the outcomes achieved by the team proposing qPCR are compellingly excellent. It thus poses stress upon researchers of the similar field to verify qPCR as a replacement or an alternative to the current popular PGS by array CGH platforms [14]. In this small verification study, we aimed to assess the PGS by qPCR strategy coupled with trophectoderm biopsy at Day 5/6 blastocyst stage. In the initial stage we first verified qPCR only at selected common aneuploidies including chromosome 13, 18, 21, X, and Y (these aneuploidies can be confirmed by FISH). The reasons we assessed only selected chromosomes are three: First, the detail design and experimental conditions regarding qPCR on all 24 chromosomes are patent protected and we need staged efforts to devise and validate our own. Therefore, in this study we adopted a method called locked nucleic acid (LNA) technology to design our qPCR platform [20]; Second, for a rapid overnight diagnosis which is warranted for fresh embryo transfer (FET), it takes a qPCR machine with a 384-well for only one embryo [18], which may not be feasible in real settings in most genetic labs; Third, we believe the “Mastenbroek controversy” may result not only from lacking an effective genotyping system to screen a “better” embryo, but also from the proven impairment of the implantation potential when biopsy at Day 3 cleavage stage embryos [3], [4], [6]. The team proposing qPCR in one hand arguing qPCR is better than FISH because it can examine all 24 chromosomes but in the other hand claiming despite array CGH should have a better resolution than qPCR whereas implying array CGH is “too sensitive” since it has a more false-positive rate when SNP array is used as a gold standard [14], [16], [18]. We thus are interested to know if it is feasible by using a limited qPCR strategy with examination of only selected common aneuploidies (similar to FISH) coupled with trophectoderm biopsy of Day 5/6 blastocyst stage embryos can still achieve a favorable reproductive outcome. It is ethical since it is by theory better than the trial protocol reported in the “Mastenbroek controversy” trial [3], in which a similar number of aneuploidies was assessed by FISH but the biopsy timing was set at Day 3 (when cleavage-stage embryos), a timing now being recognized to be inferior to Day 5/6 blastocyst stage regarding the implantation potential [9]. After the feasibility is confirmed in our setting, it is then justified to expand the repertoire of aneuploidies to 9 chromosomes (13, 15, 16, 17, 18, 21, 22, X and Y. See Rubio et al., 2013 a[5]), or 11 chromosomes (7, 9, 11, 13, 14, 15, 18, 21, 22, X and Y. These are the most commonly found trisomies at abortus. See Wang et al., 2014 [21]) and eventually to 24 chromosomes (1–22, X and Y. See Treff et al., 2012 [1]) in the future. Results Pre-clinical validation Pre-clinical validation for the PGS by qPCR was performed on 54 surplus frozen embryos (Additional file 1: Table S1). Fifty-three of these embryos were successfully diagnosed and the successful diagnostic rate was 98.1 % (53/54). Twenty-four embryos were found to carry aneuploidy on tested chromosomes and the rate of aneuploidy was thus 44.4 % (24/53). The only embryo failed to provide a confirmed diagnosis showed poor qPCR signal, possibly due to a low amount of or degraded DNA in the biopsied sample. FISH diagnosis for that embryo was negative for numerical disorders involving chromosome 13, 18, 21, X, and Y. The remaining cells of this biopsied embryo were sent for array CGH and the diagnosis was trisomy 22. Clinical verification A total of 72 embryos at Day 5/6 blastocyst stage from 13 patients were biopsied and assessed, and all (100 %) of them were successfully diagnosed (Table 1 and Additional file 1: Table S1). Twenty-eight (38.9 %) of these embryos were aneuploid, which included 4 monosomy 13, 5 monosomy 21, 7 trisomy 13, 1 trisomy 18, 9 trisomy 21, 1 monosomy 13 + trisomy 18, and 1 monosomy 18 + monosomy 21. The remaining 44 (61.1 %) embryos were euploidy, of which 28 were transferred into the 13 patients in 13 cycles. The average number of the embryos being transferred is 2.15, actually only 1–2 embryos were transferred in all women of the Group B (non-AMA group, n = 10). The only 2 women who were transferred for 4 embryos are both in the Group A (AMA group, n = 3). The transfer procedure follows the medical rule of Taiwan that the upper limit of the number of the embryos being transferred is 4. These transfers achieved 8 pregnancies, and therefore the clinical pregnancy rate was 61.5 % (8/13) per cycle. However, one early abortion was noted and the ongoing pregnancy rate up to the second trimester was 53.8 % (7/13) per transfer cycle. There were no monozygotic twinning and a total of 11 sacs were noted. Three women who were transferred for 2 embryos in the Group B had singleton pregnancies, and two women who were transferred for 2 embryos in the Group B and 2 women who were transferred for 4 embryos in the Group A had dizygotic twin pregnancies (Additional file 1: Table S1). The sustained implantation rate was thus 39.3 % (11/28) per transferred fresh embryo (Table 1). Totally, there are 2 of 3 women in Group A had ongoing pregnancies. Six women in Group B had clinical pregnancies, and 5 of them had sustained ongoing pregnancies. There are no statistical significant differences noted between these two groups regarding aneuploidy (Chi square test, p = 0.094), clinical pregnancy (Fisher's exact test, p = 1), and ongoing pregnancy (Fisher's exact test, p = 1). Array CGH for the only abortion case revealed the karyotype was 46,XY. Table 1. Clinical outcomes of PGS by qPCR with fresh embryo transfer (FET) verification series Discussion The major difficulty of comprehensive chromosome screening (CCS) by qPCR for PGS is to devise a primer set to successfully amplify the molecular markers being selected in a single experiment by optimizing the conditions for melting temperatures and experimental time intervals. In this study we successfully adopted a smart design called LNA methodology [20], [22]–[24] for qPCR PGS and verified the strategy by achieving a favorable ongoing pregnancy rate of 53.8 %. We first validated the genotyping platform we devised by achieving an almost 100 % successful diagnosis rate (98.1 %), and then verified the whole protocol of qPCR PGS followed by FET. Since the sample size is small (n = 13 cycles), it is not surprising that we failed to observe significant difference regarding the aneuploidy rates between the AMA (n = 3) and the non-AMA group (n = 10) in our patients. Meanwhile, the aneuploidy rate in our series (38.9 %) is apparently much lower than the rates observed by 24-chromosome qPCR or array CGH (more than 60 %), which is obviously due to the fact that we only selected a limited set of common aneuploidies that can ensue live births in humans [14], [15]. It has been a routine practice in our settings that PGS by FISH at Day 3 cleavage-stage embryos since 2005 and it is ethical for us to offer our patients who opted for this alternative protocol a strategy which has an advantage of an established less detrimental effect upon implantation potential by changing the timing of biopsy from Day 3 to Day 5/6 and the same repertoire of common aneuploidies being tested (but simply using qPCR instead of FISH) to enable FET[9]. The reason only trisomy 13, 18, 21, and numerical disorders involving X and Y were tested in our settings is because these are the only aneuploidies that may result in live births in humans. For people who opted for this strategy and came to our clinics, their major concern is more focused at aneuploidies instead of live birth rates. In addition, it is well recognized that despite fewer embryos would be available for transfer if being cultured in vitro onto the blastocyst stage when compared with the cleavage-stage embryos, the disadvantage may be offset by the fact that the aneuploidy rate of the blastocysts is much lower than of the cleavage-stage embryos. An observational study had reported that karyotypic evolution did exist in early human embryogenesis, in which some cleavage stage embryos classified as aneuploidy by FISH eventually developed into euploid blastocysts if by SNP array[25]. A recent randomized study even pointed out that FISH-based PGS conferred advantages at women who are in the AMA group, but not in those with repeated implantation failures group, as long as the biopsy was performed at the blastocyst stage [5]. A recent randomized trial (the BEST trial) had demonstrated that qPCR PGS CCS followed by single embryo transfer (SET) can enhance the feasibility of SET by selecting a single euploid embryo with high reproductive potential without compromising the delivery rates when compared with transfer of two unselected embryos, which instead resulted in more multiple pregnancies and the associated complications such as preterm delivery, low birth weight, and NICU (Neonatal Intensive Care Unit) admission [26]. We admit our pilot verification study had suffered from the fact that only common aneuploidies of five chromosome pairs (13, 18, 21, X, and Y) were screened and apparently it is the reason that the implantation rate per embryo in our study (39.3 %) is much lower than that in the BEST trial (69 %) [26]. However, our patients were all informed consented and knew the disadvantage before joining the study, and the limitations of the local setting were clearly disclosed to the patients. The patients were free to choose another PGS protocol by array CGH (Option 2, please refer to Patients and methods section) instead. Conclusions The merit of our work is that this is the first effort from research groups other than the original group who proposed the qPCR CCS (Reproductive Medicine Associates of New Jersey, Morristown, NJ, USA) trying to validate and verify this novel genotyping platform which was developed in-house by ourselves. Despite our results did not have matched controls such as those cycles receiving IVF but without PGS, the ongoing pregnancy rate is similar to a previous PGD series from our setting (53.8 % versus 50 %, please refer to Chang et al., 2013 [27]), indicating this protocol is clinically feasible. Future efforts will be made upon expanding the repertoire of the PGS by qPCR CCS to all 24 chromosomes, as well as carefully-designed randomized controlled trials to compare this genotyping platform with others (including no-screening, array CGH, and NGS). Patients and methods Design and selection of molecular markers for qPCR PGS An in-house screening system by dual-color qPCR was developed with specific primers for the targeted loci (situated at chromosome 13, 18, 21, X, and Y) and one internal control locus (situated at chromosome 1, the reason we chose chromosome 1 as control is because it is the least found trisomy in humans, see Wang et al., 2014 [21]). A total of 16 targeted loci and one control locus were selected. For the detailed information about the targeted loci, please refer to Table 2. Specific primers for amplification of each locus were designed by using the software Oligo 6.71 (Molecular Biology Insights, Colorado, USA), and all primer sets are flanked on each side of the exon-intron boundary to avoid possible mRNA interference. The applications of LNA-modified probes are well-established for quantifying levels of gene expression with an advantage of reducing complexity [22], [24], but has not been applied to the detection of chromosomal copy number alterations. Two kinds of LNA-modified probes, labeled with FAM™ and HEX™ (Integrated DNA Technologies, Iowa, USA) at the 5’-end, were used for quantifying the genomic copy numbers of targeted loci and control. Table 2. Summary of the targeted regions for screening of common aneuploidies Validation of qPCR in detecting common aneuploidies Each 5 cells separated from the cell lines of known common aneuploidies (including trisomy 21, trisomy 13, trisomy 18, 47,XXY, and 45,X) were processed by cell lysis of proteinase K, and the products were subjected to a 50-μL reaction volume of multiplex nested-PCR amplication for 18 cycles using an Applied Biosystems Veriti thermal cycler (Life Technologies, California, USA), and then the PCR products were purified using Agencourt AMPure XP system (Beckman Coulter, California, USA). Dual color hydrolysis probe assays were performed in triplicate to normalize and simpify calculation and to evaluate chromosomal copies, using Lightcycler 480 probes Master (Roche, Mannheim, Germany), a 20-μL reaction volume, a 96-well plate, and a 7 Light Cycler 480 Real-Time PCR System, as recommended by the supplier (Roche, Mannheim, Germany). Each well contains a particular target, and a common control reaction. A unique method of the standard delta delta threshold cycle (ΔΔCp) method was used for relative quantification. In our experiments, the Cp variation of all HEX™ reactions obtained for each well of the same sample will be controlled and ranged in less than 0.2, indicating the test sample was evenly distributed to each well. Each chromosome-specific ΔCp was calculated from the Cp of the FAM™ reactions targeting a specific chromosome minus the control Cp of the HEX™ reactions targeting the chromosome 1 within the same well. The same process was applied to individually determine the ΔCp for each targeted chromosome of the test sample, including reference set of normal male cell lines [BCRC number: 08C0011, 08C0012, 08C0013, 08C0021 and 08C0025]. Each chromosome- specific ΔCp was then normalized to the average chromosome-specific ΔCp values derived from the same evaluation of the reference set, which had been confirmed by FISH method. The calibrated chromosome-specific ΔCp values were used to calculate fold change by considering the ΔΔCp values as the negative exponent of 2, as previously described [18], [23]. The methodology was designed to specifically identify whole-chromosome but not segmental aneuploidy. The flowchart and diagram of the in-house qPCR PGS system were illustrated in Fig. 1. This qPCR was capable of accurate aneuploidy screening in 4 h, which allowed rapid evaluation of the trophectoderm biopsies and therefore provided a feasible opportunity for subsequent FET. thumbnailFig. 1. The diagram of the in-house qPCR PGS system. The flowchart of (a) detection of common aneuploidies, and (b) signal normalization and data analysis Pre-clinical validation upon surplus frozen embryos Fifty-four thawed frozen embryos at blastocyst stage were biopsied and sent for qPCR and FISH analyses. These embryos were retrieved from the surplus frozen embryos of couples who already conceived and would be discarded if not being investigated for research purpose. In those embryos diagnosed with common chromosome aneuploidies, array CGH was used to confirm the diagnoses. Clinical verification for fresh embryos In our setting we used to offer two PGS protocols. One option (Option 1) is Day 3 biopsy followed by PGS with FISH and FET; the other option (Option 2) is Day 5/6 trophectoderm biopsy followed by PGS with array CGH and frozen embryo transfer (because array CGH takes time and FET was not feasible at the study period). Only patients who had history of failed IVF (without PGS) for at least once and who opted for Option 1 were given the chance of joining this study as an alternative. All patients chose to join this study were informed consented and their autonomy was fully respected. They could choose to withdraw from the study at any time during the study period and were fully aware of the alternatives, including sticking to Option 1 or instead chose Option 2 without joining the study. During July to October of 2014, 13 infertile couples were enrolled. Among these 13 patients, 3 of them had AMA (37, 43, 45 years old respectively). The mean age of the total 13 patients was 34.1 years. No confounding factors that may affect implantation such as immune aberrations (antiphospholipid antibody syndrome in the mother), balanced translocation carriers (in both couples), and thrombophilias (protein C/S/antithrombin III deficiency) existed in these couples when they were enrolled. Clinical pregnancy was defined as positive urine HCG. Ongoing pregnancy rate (per cycle) was defined as those pregnancies proceeding into second trimester (and for each embryo being transferred, sustained implantation rate was used). 13 couples were classified as those whose age is older or equal to 35 years (Group A), and those whose age is less than 35 years (Group B). Chi square test or Fisher’s exact test was used to compare the reproductive outcomes between the groups regarding the rate of aneuploidy, clinical pregnancy, and ongoing pregnancy. Notably according to the regulations of Taiwan government, the patients would not know the results of the fetal sex. Even in aneuploidies involving sex chromosomes (specifically 47,XXY and 45,X), the results would not be disclosed to patients and only “aneuploidy” would be told to the patients and the aneuploid embryos would not be selected for transfer. In those embryos diagnosed to have chromosomal aneuploidies by qPCR, array CGH was used to confirm the diagnoses. Abbreviations AMA: Advanced maternal age CCS: Comprehensive chromosome screening CGH: Comparative genomic hybridization FET: Fresh embryo transfer FISH: Fluorescence in situ hybridization IVF: in vitro fertilization LNA: Locked nucleic acid NGS: Next generation sequencing PGS: Preimplantation genetic screening qPCR: Quantitative real-time polymerase chain reaction SET: Single embryo transfer SNP: Single nucleotide polymorphism Competing interests The authors declare that they have no competing interests. Authors’ contributions YSY, HFC, SPC, FPT, MC designed the study. SPC, GCM, MC developed the novel in-house genotyping platform. SPC, GCM, WHL, CFL, MC did the experiments. YSY, HFC, FPT, CHW, HDT, MC recruited the patients. YSY, HFC, GCM, THL, MC analyzed the results. YSY, SPC, GCM, WHL, MC wrote the paper. All authors read and approved the final manuscript. Additional file Additional file 1: Table S1.. Summary of the pre-clinical validation (for 54 surplus frozen embryos) and clinical verification (for 13 patients with 54 embryos) of PGS by qPCR. Format: DOCX Size: 32KB Download fileOpen Data Acknowledgements This study is partly funded by a grant from Changhua Christian Hospital, Taiwan to Ming Chen (103-CCH-IST-006). The authors are grateful for the genuine support and advice from Dr. Shou-Jen Kuo, the Superintendent of Changhua Christian Hospital, who also participated in the development of the novel in-house qPCR CCS system. References Treff NR, Scott RT. Methods for comprehensive chromosome screening of oocytes and embryos: capabilities, limitations, and evidence of validity. J Assist Reprod Genet. 2012; 29(5):381-90.PubMed Abstract | Publisher Full Text OpenURL Harton GL, Munne S, Surrey M, Grifo J, Kaplan B, McCulloh DH et al..Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013; 100(6):1695-703. PubMed Abstract |Publisher Full Text OpenURL Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR et al.. In vitro fertilization with preimplantation genetic screening. New Engl J Med. 2007; 357(1):9-17. PubMed Abstract | Publisher Full Text OpenURL Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs.Hum Reprod Update. 2011; 17(4):454-66. PubMed Abstract |Publisher Full Text OpenURL Rubio C, Bellver J, Rodrigo L, Bosch E, Mercader A, Vidal C, et al. Preimplantation genetic screening using fluorescence in situ hybridization in patients with repetitive implantation failure and advanced maternal age: two randomized trials. Fertil Steril. 2013;99(5):1400–7.a Braude P. Selecting the 'best' embryos: prospects for improvement. Reprod Biomed Online. 2013; 27(6):244-53.Publisher Full Text OpenURL Mastenbroek S, Repping S. Preimplantation genetic screening: back to the future. Hum Reprod. 2014; 29(9):1846-50. PubMed Abstract |Publisher Full Text OpenURL Scott RT, Ferry K, Su J, Tao X, Scott K, Treff NR. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012; 97(4):870-5. PubMed Abstract |Publisher Full Text OpenURL Scott KL, Hong KH, Scott RT. Selecting the optimal time to perform biopsy for preimplantation genetic testing. Fertil Steril. 2013;100(3):608-14. PubMed Abstract | Publisher Full Text OpenURL Scott RT, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D et al..Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial.Fertil Steril. 2013; 100(3):697-703. PubMed Abstract |Publisher Full Text OpenURL Handyside AH. 24-chromosome copy number analysis: a comparison of available technologies. Fertil Steril. 2013;100(3):595-602. PubMed Abstract | Publisher Full Text OpenURL Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E, Cottone G et al..Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29(12):2802-13. PubMed Abstract | Publisher Full Text OpenURL Wells D, Kaur K, Grifo J, Glassner M, Taylor JC, Fragouli E et al.. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet. 2014; 51(8):553-62. PubMed Abstract |Publisher Full Text OpenURL Capalbo A, Treff NR, Cimadomo D, Tao X, Upham K, Ubaldi FM, et al. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies. Eu J Hum Genet. 2014;doi:10.1038/ejhg.2014.222(in press). Rubio C, Rhodrigo L, Mir P, Mateu E, Peinado V, Milan M, et al. Use of array comparative genomic hybridization (array-CGH) for embryo assessment: clinical results. Fertil Steril. 2013;99(4):1044–8.b Schoolcraft WB, Treff NR, Stevens JM, Ferry K, Katz-Jaffe M, Scott RT.Live birth outcome with trophectoderm biopsy, blastocyst vitrification, and single-nucleotide polymorphism microarray-based comprehensive chromosome screening in infertile patients.Fertil Steril. 2011; 96(3):638-40. PubMed Abstract | Publisher Full Text OpenURL Treff NR, Levy B, Su J, Northrop LE, Tao X, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH. Mol Hum Reprod. 2010; 16(8):583-9.PubMed Abstract | Publisher Full Text OpenURL Treff NR, Tao X, Ferry KM, Su J, Taylor D, Scott RT. Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril. 2012; 97(4):819-24. PubMed Abstract | Publisher Full Text OpenURL Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C et al..Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009; 15(5):577-83. PubMed Abstract |Publisher Full Text OpenURL Brunet E, Corgnali M, Cannata F, Perrouault L, Giovannangeli C.Targeting chromosomal sites with locked nucleic acid-modified triplex-forming oligonucleotides: study of efficiency dependence on DNA nuclear environment. Nucleic Acids Res. 2006; 34(16):4546-53. PubMed Abstract | Publisher Full Text OpenURL Wang BT, Chong TP, Boyar FZ, Kopita KA, Ross LP, El-Naggar MM et al..Abnormalities in spontaneous abortions detected by G-banding and chromosomal microarray analysis (CMA) at a national reference laboratory. Mol Cytogenet. 2014; 22:7-33. OpenURL Mouritzen P, Nielsen PS, Jacobsen N, Noerholmn M, Lomholt C, Pfundheller HM et al.. The ProbeLibrary—expression profiling 99 % of all human genes usingonly 90 dual-labeled real-time PCR probes. Biotechniques. 2004; 37:492-495. OpenURL Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008; 3:1101-8.PubMed Abstract | Publisher Full Text OpenURL Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S.OligoDesign: optimal design of LNA (lockednucleic acid) oligonucleotide capture probes for gene expression profiling.Nucleic Acids Res. 2003; 31:3758-62. PubMed Abstract |Publisher Full Text OpenURL Northrop LE, Treff NR, Levy B, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16(8):590-600. PubMed Abstract | Publisher Full Text OpenURL Forman EJ, Hong KH, Franasiak JM, Scott RT. Obstetrical and neonatal outcomes from the BEST Trial: single embryo transfer with aneuploidy screening improves outcomes after in vitro fertilization without compromising delivery rates. Am J Obstet Gynecol. 2014;210(2):157.e1-6. PubMed Abstract | Publisher Full Text OpenURL Chang LJ, Huang CC, Tsai YY, Hung CC, Fang MY, Lin YC et al..Blastocyst biopsy and vitrification are effective for preimplantation genetic diagnosis of monogenic diseases. Hum Reprod. 2013;28(5):1435-44. PubMed Abstract | Publisher Full Text OpenURL
|
(5) |
2015-09-29 |
習慣流產找不到原因嗎? 或許殺手細胞是答案 或許殺手細胞是嫌疑犯 請到彰化博元婦產科(中正路一段392號)檢查 !!! 自體細胞殺胎 國內見首例博元婦產科診斷 自然殺手細胞多 導致流產 彰化市博元婦產科院長蔡鋒博醫師發現一名婦人無故流產,經追查化驗後發現婦人子宮內有大量自然殺手細胞, 人體內的自然殺手細胞本來是抵禦外來細菌、病毒等人體的免疫細胞白血球,但國內出現首例自然殺手細胞殺死胚胎案例。 彰化市博元婦產科院長蔡鋒博醫師發現一名婦人無故流產, 經追查化驗後發現婦人子宮內有大量自然殺手細胞, 「虎毒食子」般去殺死胚胎。 所幸經彰化市博元婦產科院長蔡鋒博醫師治療後,該名婦人再度成功受孕,生下一男一女。 創下全球第三例 上述案例已經在台灣生殖醫學會會中發表, 而據醫學文獻記載, 過去國外曾發生兩例自然殺手細胞殺死胚胎的案例, 國內這案例應是全球第三例。 彰化市博元婦產科院長蔡鋒博醫師發現一名婦人無故流產, 經追查化驗後發現婦人子宮內有大量自然殺手細胞,發現一名三十多歲婦人, 在懷孕九周時,因不明原因流產, 經彰化市博元婦產科 院長蔡鋒博醫師將其子宮內膜切片及胚胎組織送往美國進行免疫特殊染色後,發現子宮內帶有許多自然殺手細胞。 自然殺手細胞的作用是攻擊外來的細菌、病毒、腫瘤等。 自然殺手細胞可分為二種, 一種是存在子宮內;另一種是存在於血液及帶有CD57表面標記的自然殺手細胞,不會跑到子宮內。但該名少婦的CD57表面標記自然殺手細胞,不知為何跑到子宮內,且在四百倍顯微鏡觀察下,發現數量高達二十八點二個。 彰化市博元婦產科院長蔡鋒博醫師說, 國外研究顯示,子宮內的CD57表面標記自然殺手細胞在四百倍顯微鏡下, 若數量超過三個,就可能攻擊胚胎,導致流產, 推論自然殺手細胞過多可能是造成這名婦女流產原因。 被當外來物攻擊 彰化市博元婦產科院長蔡鋒博醫師發現一名婦人無故流產,經追查化驗後發現婦人子宮內有大量自然殺手細胞, 彰化市博元婦產科院長蔡鋒博醫師以腫瘤壞死因子拮抗劑為這名婦人治療,婦人子宮內的自然殺手細胞從二十八點二降到一點三個,少婦於今年二、三月間成功受孕,目前懷孕三十周。 自然殺手細胞正常情況不會攻擊胚胎, 彰化市博元婦產科院長蔡鋒博醫師研判該名個案可能是該婦女殺手細胞過強、數量多, 加上胚胎上原應有父母的抗原,但母親的抗原弱,父親抗原反應又特別強,導致殺手細胞無法辨識,才誤將胚胎當成外來物攻擊。 自然殺手細胞小檔案 分類與屬性: .免疫細胞白血球的一種 .自然殺手細胞可分為二種,一種是在子宮內,另一種是存在於血液及帶有CD57表面標記 作用:當體內有細菌、病毒、腫瘤入侵時,人體免疫系統第一道防線的自然殺手細胞會去攻擊這些外來物,保護身體 醫療用途:在癌症的免疫治療上,可在體外培養自然殺手細胞植入體內,攻擊腫瘤 彰化市博元婦產科院長蔡鋒博醫師 內置圖片 3內置圖片 4 內置圖片 1內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(231) |
2015-09-29 |
習慣流產找不到原因嗎? 或許殺手細胞是答案 或許殺手細胞是嫌疑犯 請到彰化博元婦產科(中正路一段392號)檢查 !!! 自體細胞殺胎 國內見首例博元婦產科診斷 自然殺手細胞多 導致流產 彰化市博元婦產科院長蔡鋒博醫師發現一名婦人無故流產,經追查化驗後發現婦人子宮內有大量自然殺手細胞, 人體內的自然殺手細胞本來是抵禦外來細菌、病毒等人體的免疫細胞白血球,但國內出現首例自然殺手細胞殺死胚胎案例。 彰化市博元婦產科院長蔡鋒博醫師發現一名婦人無故流產, 經追查化驗後發現婦人子宮內有大量自然殺手細胞, 「虎毒食子」般去殺死胚胎。 所幸經彰化市博元婦產科院長蔡鋒博醫師治療後,該名婦人再度成功受孕,生下一男一女。 創下全球第三例 上述案例已經在台灣生殖醫學會會中發表, 而據醫學文獻記載, 過去國外曾發生兩例自然殺手細胞殺死胚胎的案例, 國內這案例應是全球第三例。 彰化市博元婦產科院長蔡鋒博醫師發現一名婦人無故流產, 經追查化驗後發現婦人子宮內有大量自然殺手細胞,發現一名三十多歲婦人, 在懷孕九周時,因不明原因流產, 經彰化市博元婦產科 院長蔡鋒博醫師將其子宮內膜切片及胚胎組織送往美國進行免疫特殊染色後,發現子宮內帶有許多自然殺手細胞。 自然殺手細胞的作用是攻擊外來的細菌、病毒、腫瘤等。 自然殺手細胞可分為二種, 一種是存在子宮內;另一種是存在於血液及帶有CD57表面標記的自然殺手細胞,不會跑到子宮內。但該名少婦的CD57表面標記自然殺手細胞,不知為何跑到子宮內,且在四百倍顯微鏡觀察下,發現數量高達二十八點二個。 彰化市博元婦產科院長蔡鋒博醫師說, 國外研究顯示,子宮內的CD57表面標記自然殺手細胞在四百倍顯微鏡下, 若數量超過三個,就可能攻擊胚胎,導致流產, 推論自然殺手細胞過多可能是造成這名婦女流產原因。 被當外來物攻擊 彰化市博元婦產科院長蔡鋒博醫師發現一名婦人無故流產,經追查化驗後發現婦人子宮內有大量自然殺手細胞, 彰化市博元婦產科院長蔡鋒博醫師以腫瘤壞死因子拮抗劑為這名婦人治療,婦人子宮內的自然殺手細胞從二十八點二降到一點三個,少婦於今年二、三月間成功受孕,目前懷孕三十周。 自然殺手細胞正常情況不會攻擊胚胎, 彰化市博元婦產科院長蔡鋒博醫師研判該名個案可能是該婦女殺手細胞過強、數量多, 加上胚胎上原應有父母的抗原,但母親的抗原弱,父親抗原反應又特別強,導致殺手細胞無法辨識,才誤將胚胎當成外來物攻擊。 自然殺手細胞小檔案 分類與屬性: .免疫細胞白血球的一種 .自然殺手細胞可分為二種,一種是在子宮內,另一種是存在於血液及帶有CD57表面標記 作用:當體內有細菌、病毒、腫瘤入侵時,人體免疫系統第一道防線的自然殺手細胞會去攻擊這些外來物,保護身體 醫療用途:在癌症的免疫治療上,可在體外培養自然殺手細胞植入體內,攻擊腫瘤 彰化市博元婦產科院長蔡鋒博醫師 內置圖片 3內置圖片 4 內置圖片 1內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(5) |
2015-09-29 |
內置圖片 3內置圖片 4 內置圖片 1內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(3) |
2015-09-29 |
53歲嬤產雙胞孫抱「小阿姨」在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 「上天給我最好母親節禮物」 53歲嬤產雙胞孫抱「小阿姨」 「上天給我最好母親節禮物」在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 http://www.appledaily.com.tw/appledaily/article/headline/20040509/918751/applesearch/53%E6%AD%B2%E5%AC%A4%E7%94%A2%E9%9B%99%E8%83%9E%E5%AD%AB%E6%8A%B1%E3%80%8C%E5%B0%8F%E9%98%BF%E5%A7%A8%E3%80%8D 字級:最小字型預設最大字型頭條要聞 〉 分享到 Facebook分享到 Plurk分享到 Twitter 53歲嬤產雙胞孫抱「小阿姨」 「上天給我最好母親節禮物」 2004年05月09日 阿嬤的孫女也對「小阿姨」呵護有加。 【孫英哲╱彰化報導】十八歲產下第一胎,三十七歲就有孫子的年輕阿嬤秋怡(應當事人要求化名),今年透過人工受孕又產下一對雙胞胎女兒,讓已經五十三歲的她重溫撫育寶寶的滋味,今天是母親節,秋怡說:「這兩個活潑可愛的雙胞胎,就是上天給我最好的母親節禮物﹗」 最強動新聞看這裡 喜獲嬌娃 年輕阿嬤秋怡在當高齡產婦生下雙胞胎前,已有四個兒女,其中最大的女兒三十五歲,小兒子也有三十歲,而她四個孫子中,長孫已經十六歲就讀高中。既然已經兒孫成群為何還要再生產?她表示,這是為了完成丈夫的願望。 再婚為夫傳宗接代 多年前,秋怡再婚後,因為丈夫是獨子,她為了幫夫家傳宗接代,也想擁有兩人愛的結晶,幾經考慮後,三年前鼓起勇氣決定再度受孕,但一直未成功。去年在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 回憶生下雙胞胎的當時,秋怡激動地說:「從沒想過在我這個年紀還能再一次當『媽咪』,再度體會懷胎、生產的滋味,而手中抱著自己剛出生小孩的那種感覺,真是人間一大快樂,就好像上天堂一樣美妙!」 兩個雙胞胎姊妹的降臨也讓秋怡的家族起了微妙的變化,去年秋怡的四個子女聽到自己的母親懷孕時,一開始雖都覺得不可思議,但仍給予支持鼓勵,而已經當阿嬤的秋怡生產後,還是由大女兒趕回娘家為她坐月子。 距上次懷胎已30年 兩個雙胞胎姊妹不但備受秋怡夫家及其四個兒女疼愛,連她的四個孫子也對兩個「小阿姨」呵護有加。距上次當「媽咪」已有三十年之久,秋怡指出,現在雖然還得三更半夜幫小貝比換尿布、餵母乳,但對她來說都是一種甜蜜的負擔。 三十七歲就當阿嬤,五十三歲又再度產子,秋怡的人生讓人充滿驚訝,現在她抱著自己兩個雙胞胎出門時,雖常被人誤認是帶著孫子出門,但她總是開心地跟對方說:「這兩個可是我的千金!」看著旁人訝異的眼光,秋怡心中卻是滿滿的幸福! 50歲以後禁止人工助孕 【沈能元╱台北報導】五十三歲的秋怡雖以人工生殖方式生下雙胞胎後,但高齡產婦懷孕生子仍存在許多風險,衛生署更研擬「人工生殖法」草案,禁止五十歲以上婦女進行人工助孕。 高齡孕婦難產機率高 婦產科醫學會理事長李茂盛昨表示,五十歲以上婦女自然受孕的機率只有萬分之一,五十歲以上孕婦產下的寶寶一年約三、四個;如要接受人工助孕,必須通報衛生署審查。 衛生署國民健康局發言人趙坤郁表示,衛生署研擬的「人工生殖法」草案,將限制五十歲以上婦女不得進行人工助孕,一旦完成立法程序,即使這些阿嬤們有心生子,也無法再以人工助孕方式懷孕。 博元婦產科院長蔡鋒博表示,年齡三十五歲以上就稱為高齡孕婦,高齡孕婦對疾病的抵抗力較弱,分娩時難產機率也較高,所以他並不建議五十歲以上的婦女接受人工助孕。 內置圖片 1 內置圖片 2 內置圖片 3 內置圖片 4 內置圖片 5 內置圖片 6 內置圖片 7 內置圖片 8 內置圖片 9
|
(0) |
2015-09-29 |
53歲嬤產雙胞孫抱「小阿姨」在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 「上天給我最好母親節禮物」 53歲嬤產雙胞孫抱「小阿姨」 「上天給我最好母親節禮物」在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 http://www.appledaily.com.tw/appledaily/article/headline/20040509/918751/applesearch/53%E6%AD%B2%E5%AC%A4%E7%94%A2%E9%9B%99%E8%83%9E%E5%AD%AB%E6%8A%B1%E3%80%8C%E5%B0%8F%E9%98%BF%E5%A7%A8%E3%80%8D 字級:最小字型預設最大字型頭條要聞 〉 分享到 Facebook分享到 Plurk分享到 Twitter 53歲嬤產雙胞孫抱「小阿姨」 「上天給我最好母親節禮物」 2004年05月09日 阿嬤的孫女也對「小阿姨」呵護有加。 【孫英哲╱彰化報導】十八歲產下第一胎,三十七歲就有孫子的年輕阿嬤秋怡(應當事人要求化名),今年透過人工受孕又產下一對雙胞胎女兒,讓已經五十三歲的她重溫撫育寶寶的滋味,今天是母親節,秋怡說:「這兩個活潑可愛的雙胞胎,就是上天給我最好的母親節禮物﹗」 最強動新聞看這裡 喜獲嬌娃 年輕阿嬤秋怡在當高齡產婦生下雙胞胎前,已有四個兒女,其中最大的女兒三十五歲,小兒子也有三十歲,而她四個孫子中,長孫已經十六歲就讀高中。既然已經兒孫成群為何還要再生產?她表示,這是為了完成丈夫的願望。 再婚為夫傳宗接代 多年前,秋怡再婚後,因為丈夫是獨子,她為了幫夫家傳宗接代,也想擁有兩人愛的結晶,幾經考慮後,三年前鼓起勇氣決定再度受孕,但一直未成功。去年在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 回憶生下雙胞胎的當時,秋怡激動地說:「從沒想過在我這個年紀還能再一次當『媽咪』,再度體會懷胎、生產的滋味,而手中抱著自己剛出生小孩的那種感覺,真是人間一大快樂,就好像上天堂一樣美妙!」 兩個雙胞胎姊妹的降臨也讓秋怡的家族起了微妙的變化,去年秋怡的四個子女聽到自己的母親懷孕時,一開始雖都覺得不可思議,但仍給予支持鼓勵,而已經當阿嬤的秋怡生產後,還是由大女兒趕回娘家為她坐月子。 距上次懷胎已30年 兩個雙胞胎姊妹不但備受秋怡夫家及其四個兒女疼愛,連她的四個孫子也對兩個「小阿姨」呵護有加。距上次當「媽咪」已有三十年之久,秋怡指出,現在雖然還得三更半夜幫小貝比換尿布、餵母乳,但對她來說都是一種甜蜜的負擔。 三十七歲就當阿嬤,五十三歲又再度產子,秋怡的人生讓人充滿驚訝,現在她抱著自己兩個雙胞胎出門時,雖常被人誤認是帶著孫子出門,但她總是開心地跟對方說:「這兩個可是我的千金!」看著旁人訝異的眼光,秋怡心中卻是滿滿的幸福! 50歲以後禁止人工助孕 【沈能元╱台北報導】五十三歲的秋怡雖以人工生殖方式生下雙胞胎後,但高齡產婦懷孕生子仍存在許多風險,衛生署更研擬「人工生殖法」草案,禁止五十歲以上婦女進行人工助孕。 高齡孕婦難產機率高 婦產科醫學會理事長李茂盛昨表示,五十歲以上婦女自然受孕的機率只有萬分之一,五十歲以上孕婦產下的寶寶一年約三、四個;如要接受人工助孕,必須通報衛生署審查。 衛生署國民健康局發言人趙坤郁表示,衛生署研擬的「人工生殖法」草案,將限制五十歲以上婦女不得進行人工助孕,一旦完成立法程序,即使這些阿嬤們有心生子,也無法再以人工助孕方式懷孕。 博元婦產科院長蔡鋒博表示,年齡三十五歲以上就稱為高齡孕婦,高齡孕婦對疾病的抵抗力較弱,分娩時難產機率也較高,所以他並不建議五十歲以上的婦女接受人工助孕。 內置圖片 1 內置圖片 2 內置圖片 3 內置圖片 4 內置圖片 5 內置圖片 6 內置圖片 7 內置圖片 8 內置圖片 9
|
(0) |
2015-09-29 |
53歲嬤產雙胞孫抱「小阿姨」在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 「上天給我最好母親節禮物」 53歲嬤產雙胞孫抱「小阿姨」 「上天給我最好母親節禮物」在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 http://www.appledaily.com.tw/appledaily/article/headline/20040509/918751/applesearch/53%E6%AD%B2%E5%AC%A4%E7%94%A2%E9%9B%99%E8%83%9E%E5%AD%AB%E6%8A%B1%E3%80%8C%E5%B0%8F%E9%98%BF%E5%A7%A8%E3%80%8D 字級:最小字型預設最大字型頭條要聞 〉 分享到 Facebook分享到 Plurk分享到 Twitter 53歲嬤產雙胞孫抱「小阿姨」 「上天給我最好母親節禮物」 2004年05月09日 阿嬤的孫女也對「小阿姨」呵護有加。 【孫英哲╱彰化報導】十八歲產下第一胎,三十七歲就有孫子的年輕阿嬤秋怡(應當事人要求化名),今年透過人工受孕又產下一對雙胞胎女兒,讓已經五十三歲的她重溫撫育寶寶的滋味,今天是母親節,秋怡說:「這兩個活潑可愛的雙胞胎,就是上天給我最好的母親節禮物﹗」 最強動新聞看這裡 喜獲嬌娃 年輕阿嬤秋怡在當高齡產婦生下雙胞胎前,已有四個兒女,其中最大的女兒三十五歲,小兒子也有三十歲,而她四個孫子中,長孫已經十六歲就讀高中。既然已經兒孫成群為何還要再生產?她表示,這是為了完成丈夫的願望。 再婚為夫傳宗接代 多年前,秋怡再婚後,因為丈夫是獨子,她為了幫夫家傳宗接代,也想擁有兩人愛的結晶,幾經考慮後,三年前鼓起勇氣決定再度受孕,但一直未成功。去年在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 回憶生下雙胞胎的當時,秋怡激動地說:「從沒想過在我這個年紀還能再一次當『媽咪』,再度體會懷胎、生產的滋味,而手中抱著自己剛出生小孩的那種感覺,真是人間一大快樂,就好像上天堂一樣美妙!」 兩個雙胞胎姊妹的降臨也讓秋怡的家族起了微妙的變化,去年秋怡的四個子女聽到自己的母親懷孕時,一開始雖都覺得不可思議,但仍給予支持鼓勵,而已經當阿嬤的秋怡生產後,還是由大女兒趕回娘家為她坐月子。 距上次懷胎已30年 兩個雙胞胎姊妹不但備受秋怡夫家及其四個兒女疼愛,連她的四個孫子也對兩個「小阿姨」呵護有加。距上次當「媽咪」已有三十年之久,秋怡指出,現在雖然還得三更半夜幫小貝比換尿布、餵母乳,但對她來說都是一種甜蜜的負擔。 三十七歲就當阿嬤,五十三歲又再度產子,秋怡的人生讓人充滿驚訝,現在她抱著自己兩個雙胞胎出門時,雖常被人誤認是帶著孫子出門,但她總是開心地跟對方說:「這兩個可是我的千金!」看著旁人訝異的眼光,秋怡心中卻是滿滿的幸福! 50歲以後禁止人工助孕 【沈能元╱台北報導】五十三歲的秋怡雖以人工生殖方式生下雙胞胎後,但高齡產婦懷孕生子仍存在許多風險,衛生署更研擬「人工生殖法」草案,禁止五十歲以上婦女進行人工助孕。 高齡孕婦難產機率高 婦產科醫學會理事長李茂盛昨表示,五十歲以上婦女自然受孕的機率只有萬分之一,五十歲以上孕婦產下的寶寶一年約三、四個;如要接受人工助孕,必須通報衛生署審查。 衛生署國民健康局發言人趙坤郁表示,衛生署研擬的「人工生殖法」草案,將限制五十歲以上婦女不得進行人工助孕,一旦完成立法程序,即使這些阿嬤們有心生子,也無法再以人工助孕方式懷孕。 博元婦產科院長蔡鋒博表示,年齡三十五歲以上就稱為高齡孕婦,高齡孕婦對疾病的抵抗力較弱,分娩時難產機率也較高,所以他並不建議五十歲以上的婦女接受人工助孕。 內置圖片 1 內置圖片 2 內置圖片 3 內置圖片 4 內置圖片 5 內置圖片 6 內置圖片 7 內置圖片 8 內置圖片 9
|
(4) |
2015-09-29 |
53歲嬤產雙胞孫抱「小阿姨」在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 「上天給我最好母親節禮物」 53歲嬤產雙胞孫抱「小阿姨」 「上天給我最好母親節禮物」在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 http://www.appledaily.com.tw/appledaily/article/headline/20040509/918751/applesearch/53%E6%AD%B2%E5%AC%A4%E7%94%A2%E9%9B%99%E8%83%9E%E5%AD%AB%E6%8A%B1%E3%80%8C%E5%B0%8F%E9%98%BF%E5%A7%A8%E3%80%8D 字級:最小字型預設最大字型頭條要聞 〉 分享到 Facebook分享到 Plurk分享到 Twitter 53歲嬤產雙胞孫抱「小阿姨」 「上天給我最好母親節禮物」 2004年05月09日 阿嬤的孫女也對「小阿姨」呵護有加。 【孫英哲╱彰化報導】十八歲產下第一胎,三十七歲就有孫子的年輕阿嬤秋怡(應當事人要求化名),今年透過人工受孕又產下一對雙胞胎女兒,讓已經五十三歲的她重溫撫育寶寶的滋味,今天是母親節,秋怡說:「這兩個活潑可愛的雙胞胎,就是上天給我最好的母親節禮物﹗」 最強動新聞看這裡 喜獲嬌娃 年輕阿嬤秋怡在當高齡產婦生下雙胞胎前,已有四個兒女,其中最大的女兒三十五歲,小兒子也有三十歲,而她四個孫子中,長孫已經十六歲就讀高中。既然已經兒孫成群為何還要再生產?她表示,這是為了完成丈夫的願望。 再婚為夫傳宗接代 多年前,秋怡再婚後,因為丈夫是獨子,她為了幫夫家傳宗接代,也想擁有兩人愛的結晶,幾經考慮後,三年前鼓起勇氣決定再度受孕,但一直未成功。去年在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 回憶生下雙胞胎的當時,秋怡激動地說:「從沒想過在我這個年紀還能再一次當『媽咪』,再度體會懷胎、生產的滋味,而手中抱著自己剛出生小孩的那種感覺,真是人間一大快樂,就好像上天堂一樣美妙!」 兩個雙胞胎姊妹的降臨也讓秋怡的家族起了微妙的變化,去年秋怡的四個子女聽到自己的母親懷孕時,一開始雖都覺得不可思議,但仍給予支持鼓勵,而已經當阿嬤的秋怡生產後,還是由大女兒趕回娘家為她坐月子。 距上次懷胎已30年 兩個雙胞胎姊妹不但備受秋怡夫家及其四個兒女疼愛,連她的四個孫子也對兩個「小阿姨」呵護有加。距上次當「媽咪」已有三十年之久,秋怡指出,現在雖然還得三更半夜幫小貝比換尿布、餵母乳,但對她來說都是一種甜蜜的負擔。 三十七歲就當阿嬤,五十三歲又再度產子,秋怡的人生讓人充滿驚訝,現在她抱著自己兩個雙胞胎出門時,雖常被人誤認是帶著孫子出門,但她總是開心地跟對方說:「這兩個可是我的千金!」看著旁人訝異的眼光,秋怡心中卻是滿滿的幸福! 50歲以後禁止人工助孕 【沈能元╱台北報導】五十三歲的秋怡雖以人工生殖方式生下雙胞胎後,但高齡產婦懷孕生子仍存在許多風險,衛生署更研擬「人工生殖法」草案,禁止五十歲以上婦女進行人工助孕。 高齡孕婦難產機率高 婦產科醫學會理事長李茂盛昨表示,五十歲以上婦女自然受孕的機率只有萬分之一,五十歲以上孕婦產下的寶寶一年約三、四個;如要接受人工助孕,必須通報衛生署審查。 衛生署國民健康局發言人趙坤郁表示,衛生署研擬的「人工生殖法」草案,將限制五十歲以上婦女不得進行人工助孕,一旦完成立法程序,即使這些阿嬤們有心生子,也無法再以人工助孕方式懷孕。 博元婦產科院長蔡鋒博表示,年齡三十五歲以上就稱為高齡孕婦,高齡孕婦對疾病的抵抗力較弱,分娩時難產機率也較高,所以他並不建議五十歲以上的婦女接受人工助孕。 內置圖片 1 內置圖片 2 內置圖片 3 內置圖片 4 內置圖片 5 內置圖片 6 內置圖片 7 內置圖片 8 內置圖片 9
|
(0) |
2015-09-29 |
53歲嬤產雙胞孫抱「小阿姨」在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 「上天給我最好母親節禮物」 53歲嬤產雙胞孫抱「小阿姨」 「上天給我最好母親節禮物」在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 http://www.appledaily.com.tw/appledaily/article/headline/20040509/918751/applesearch/53%E6%AD%B2%E5%AC%A4%E7%94%A2%E9%9B%99%E8%83%9E%E5%AD%AB%E6%8A%B1%E3%80%8C%E5%B0%8F%E9%98%BF%E5%A7%A8%E3%80%8D 字級:最小字型預設最大字型頭條要聞 〉 分享到 Facebook分享到 Plurk分享到 Twitter 53歲嬤產雙胞孫抱「小阿姨」 「上天給我最好母親節禮物」 2004年05月09日 阿嬤的孫女也對「小阿姨」呵護有加。 【孫英哲╱彰化報導】十八歲產下第一胎,三十七歲就有孫子的年輕阿嬤秋怡(應當事人要求化名),今年透過人工受孕又產下一對雙胞胎女兒,讓已經五十三歲的她重溫撫育寶寶的滋味,今天是母親節,秋怡說:「這兩個活潑可愛的雙胞胎,就是上天給我最好的母親節禮物﹗」 最強動新聞看這裡 喜獲嬌娃 年輕阿嬤秋怡在當高齡產婦生下雙胞胎前,已有四個兒女,其中最大的女兒三十五歲,小兒子也有三十歲,而她四個孫子中,長孫已經十六歲就讀高中。既然已經兒孫成群為何還要再生產?她表示,這是為了完成丈夫的願望。 再婚為夫傳宗接代 多年前,秋怡再婚後,因為丈夫是獨子,她為了幫夫家傳宗接代,也想擁有兩人愛的結晶,幾經考慮後,三年前鼓起勇氣決定再度受孕,但一直未成功。去年在博元婦產科院長蔡鋒博醫師協助下進行人工受孕,還一次懷了三胞胎,後來經過減胎,年初產下一對雙胞胎姊妹。 回憶生下雙胞胎的當時,秋怡激動地說:「從沒想過在我這個年紀還能再一次當『媽咪』,再度體會懷胎、生產的滋味,而手中抱著自己剛出生小孩的那種感覺,真是人間一大快樂,就好像上天堂一樣美妙!」 兩個雙胞胎姊妹的降臨也讓秋怡的家族起了微妙的變化,去年秋怡的四個子女聽到自己的母親懷孕時,一開始雖都覺得不可思議,但仍給予支持鼓勵,而已經當阿嬤的秋怡生產後,還是由大女兒趕回娘家為她坐月子。 距上次懷胎已30年 兩個雙胞胎姊妹不但備受秋怡夫家及其四個兒女疼愛,連她的四個孫子也對兩個「小阿姨」呵護有加。距上次當「媽咪」已有三十年之久,秋怡指出,現在雖然還得三更半夜幫小貝比換尿布、餵母乳,但對她來說都是一種甜蜜的負擔。 三十七歲就當阿嬤,五十三歲又再度產子,秋怡的人生讓人充滿驚訝,現在她抱著自己兩個雙胞胎出門時,雖常被人誤認是帶著孫子出門,但她總是開心地跟對方說:「這兩個可是我的千金!」看著旁人訝異的眼光,秋怡心中卻是滿滿的幸福! 50歲以後禁止人工助孕 【沈能元╱台北報導】五十三歲的秋怡雖以人工生殖方式生下雙胞胎後,但高齡產婦懷孕生子仍存在許多風險,衛生署更研擬「人工生殖法」草案,禁止五十歲以上婦女進行人工助孕。 高齡孕婦難產機率高 婦產科醫學會理事長李茂盛昨表示,五十歲以上婦女自然受孕的機率只有萬分之一,五十歲以上孕婦產下的寶寶一年約三、四個;如要接受人工助孕,必須通報衛生署審查。 衛生署國民健康局發言人趙坤郁表示,衛生署研擬的「人工生殖法」草案,將限制五十歲以上婦女不得進行人工助孕,一旦完成立法程序,即使這些阿嬤們有心生子,也無法再以人工助孕方式懷孕。 博元婦產科院長蔡鋒博表示,年齡三十五歲以上就稱為高齡孕婦,高齡孕婦對疾病的抵抗力較弱,分娩時難產機率也較高,所以他並不建議五十歲以上的婦女接受人工助孕。 內置圖片 1 內置圖片 2 內置圖片 3 內置圖片 4 內置圖片 5 內置圖片 6 內置圖片 7 內置圖片 8 內置圖片 9
|
(1) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(2) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(1) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫 師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2 內置圖片 3 內置圖片 1 內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(324) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫 師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2 內置圖片 3 內置圖片 1 內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(42) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫 師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2 內置圖片 3 內置圖片 1 內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(6) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫 師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2 內置圖片 3 內置圖片 1 內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(1) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫 師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2 內置圖片 3 內置圖片 1 內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(2) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫 師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(0) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫 師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(2) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2
|
(2) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:
|
(0) |
2015-09-29 |
試管嬰兒孕前基因篩選首次擴至癌症:“無癌寶寶” 1遺傳性胃癌、 2腎癌、 3胰腺癌 4前列腺癌、 5子宮內膜癌 6視網膜母細胞---13q14位置的RB1 內置圖片 1 中南大學教授、中信湘雅生殖與遺傳專科醫院院長盧光琇 宣布,她所在的研究團隊運用最新的胚胎植入前遺傳學診斷(PGD)技術,對一個家族性致癌基因在後代中的傳遞進行了排除,通過該技術誕生的國內首例“無癌寶寶”目前已滿半歲,隨訪顯示寶寶身體指標一切正常。據悉,這是我國首次將試管嬰兒的孕前基因篩選範圍擴大至惡性腫瘤領域並取得成功,不僅意味著PGD技術的應用範圍被拓寬,打開了癌症相關基因篩檢的大門,也標誌著我國在遺傳性腫瘤基因檢測及孕前診斷領域達到世界先進水平。 這一被“阻斷”的致癌基因是位於人類染色體 13q14位置的RB1。它本是一個抑癌基因,但時常因發生突變而“失活”, 失活後極可能導致視網膜母細胞瘤——兒童中最常見的原發性“眼癌”和第三位最常見的兒童期癌症。 統計表明,約35%-40%的視網膜母細胞瘤患者的生殖系存在RB1基因突變,這將導致其後代存在極高的患癌風險。 據介紹,這名“無癌寶寶”的父親兩歲時便因患視網膜母細胞瘤而被迫摘除了病變的右眼,中信湘雅生殖與遺傳專科醫院在對其進行基因檢測時確認, RB1基因在9號外顯子上存在一個缺失突變,導致蛋白編碼錯誤,造成後代惡性腫瘤的高發風險。該院採用輔助生殖技術與PGD技術相結合,對體外受精獲得的胚胎進行了篩查,將不存在該致病突變的胚胎移植入母親子宮,並成功生育。由於從胚胎時期起就排除了在家族中傳遞的致癌基因突變,這名今年3月誕生的“無癌寶寶”未來患這種癌症的機率已大幅降低。 鑑於近年來育齡期人群患癌症的比例不斷增加,盧光琇呼籲,應加強對腫瘤生殖學這一腫瘤學與生殖醫學交叉形成的新興學科的研究,以盡最大可能幫助患者實現延長生命和保存生育能力的平衡,達到抗癌和優生的雙重目的。 生殖與遺傳專科醫院遺傳中心已可對遺傳性胃癌、腎癌、胰腺癌、前列腺癌、子宮內膜癌及視網膜母細胞瘤等腫瘤疾病開展生殖前遺傳診斷和篩查,已成為國內最大的細胞和分子遺傳學診斷中心,和我國基因診斷數量和種類最多的中心之一。 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集 內置圖片 2 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(5) |
2015-09-29 |
試管嬰兒孕前基因篩選首次擴至癌症:“無癌寶寶” 1遺傳性胃癌、 2腎癌、 3胰腺癌 4前列腺癌、 5子宮內膜癌 6視網膜母細胞---13q14位置的RB1 內置圖片 1 中南大學教授、中信湘雅生殖與遺傳專科醫院院長盧光琇 宣布,她所在的研究團隊運用最新的胚胎植入前遺傳學診斷(PGD)技術,對一個家族性致癌基因在後代中的傳遞進行了排除,通過該技術誕生的國內首例“無癌寶寶”目前已滿半歲,隨訪顯示寶寶身體指標一切正常。據悉,這是我國首次將試管嬰兒的孕前基因篩選範圍擴大至惡性腫瘤領域並取得成功,不僅意味著PGD技術的應用範圍被拓寬,打開了癌症相關基因篩檢的大門,也標誌著我國在遺傳性腫瘤基因檢測及孕前診斷領域達到世界先進水平。 這一被“阻斷”的致癌基因是位於人類染色體 13q14位置的RB1。它本是一個抑癌基因,但時常因發生突變而“失活”, 失活後極可能導致視網膜母細胞瘤——兒童中最常見的原發性“眼癌”和第三位最常見的兒童期癌症。 統計表明,約35%-40%的視網膜母細胞瘤患者的生殖系存在RB1基因突變,這將導致其後代存在極高的患癌風險。 據介紹,這名“無癌寶寶”的父親兩歲時便因患視網膜母細胞瘤而被迫摘除了病變的右眼,中信湘雅生殖與遺傳專科醫院在對其進行基因檢測時確認, RB1基因在9號外顯子上存在一個缺失突變,導致蛋白編碼錯誤,造成後代惡性腫瘤的高發風險。該院採用輔助生殖技術與PGD技術相結合,對體外受精獲得的胚胎進行了篩查,將不存在該致病突變的胚胎移植入母親子宮,並成功生育。由於從胚胎時期起就排除了在家族中傳遞的致癌基因突變,這名今年3月誕生的“無癌寶寶”未來患這種癌症的機率已大幅降低。 鑑於近年來育齡期人群患癌症的比例不斷增加,盧光琇呼籲,應加強對腫瘤生殖學這一腫瘤學與生殖醫學交叉形成的新興學科的研究,以盡最大可能幫助患者實現延長生命和保存生育能力的平衡,達到抗癌和優生的雙重目的。 生殖與遺傳專科醫院遺傳中心已可對遺傳性胃癌、腎癌、胰腺癌、前列腺癌、子宮內膜癌及視網膜母細胞瘤等腫瘤疾病開展生殖前遺傳診斷和篩查,已成為國內最大的細胞和分子遺傳學診斷中心,和我國基因診斷數量和種類最多的中心之一。 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集 內置圖片 2 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(1) |
2015-09-29 |
試管嬰兒孕前基因篩選首次擴至癌症:“無癌寶寶” 1遺傳性胃癌、 2腎癌、 3胰腺癌 4前列腺癌、 5子宮內膜癌 6視網膜母細胞---13q14位置的RB1 內置圖片 1 中南大學教授、中信湘雅生殖與遺傳專科醫院院長盧光琇 宣布,她所在的研究團隊運用最新的胚胎植入前遺傳學診斷(PGD)技術,對一個家族性致癌基因在後代中的傳遞進行了排除,通過該技術誕生的國內首例“無癌寶寶”目前已滿半歲,隨訪顯示寶寶身體指標一切正常。據悉,這是我國首次將試管嬰兒的孕前基因篩選範圍擴大至惡性腫瘤領域並取得成功,不僅意味著PGD技術的應用範圍被拓寬,打開了癌症相關基因篩檢的大門,也標誌著我國在遺傳性腫瘤基因檢測及孕前診斷領域達到世界先進水平。 這一被“阻斷”的致癌基因是位於人類染色體 13q14位置的RB1。它本是一個抑癌基因,但時常因發生突變而“失活”, 失活後極可能導致視網膜母細胞瘤——兒童中最常見的原發性“眼癌”和第三位最常見的兒童期癌症。 統計表明,約35%-40%的視網膜母細胞瘤患者的生殖系存在RB1基因突變,這將導致其後代存在極高的患癌風險。 據介紹,這名“無癌寶寶”的父親兩歲時便因患視網膜母細胞瘤而被迫摘除了病變的右眼,中信湘雅生殖與遺傳專科醫院在對其進行基因檢測時確認, RB1基因在9號外顯子上存在一個缺失突變,導致蛋白編碼錯誤,造成後代惡性腫瘤的高發風險。該院採用輔助生殖技術與PGD技術相結合,對體外受精獲得的胚胎進行了篩查,將不存在該致病突變的胚胎移植入母親子宮,並成功生育。由於從胚胎時期起就排除了在家族中傳遞的致癌基因突變,這名今年3月誕生的“無癌寶寶”未來患這種癌症的機率已大幅降低。 鑑於近年來育齡期人群患癌症的比例不斷增加,盧光琇呼籲,應加強對腫瘤生殖學這一腫瘤學與生殖醫學交叉形成的新興學科的研究,以盡最大可能幫助患者實現延長生命和保存生育能力的平衡,達到抗癌和優生的雙重目的。 生殖與遺傳專科醫院遺傳中心已可對遺傳性胃癌、腎癌、胰腺癌、前列腺癌、子宮內膜癌及視網膜母細胞瘤等腫瘤疾病開展生殖前遺傳診斷和篩查,已成為國內最大的細胞和分子遺傳學診斷中心,和我國基因診斷數量和種類最多的中心之一。 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集 內置圖片 2 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(4) |
2015-09-29 |
試管嬰兒孕前基因篩選首次擴至癌症:“無癌寶寶” 1遺傳性胃癌、 2腎癌、 3胰腺癌 4前列腺癌、 5子宮內膜癌 6視網膜母細胞---13q14位置的RB1 內置圖片 1 中南大學教授、中信湘雅生殖與遺傳專科醫院院長盧光琇 宣布,她所在的研究團隊運用最新的胚胎植入前遺傳學診斷(PGD)技術,對一個家族性致癌基因在後代中的傳遞進行了排除,通過該技術誕生的國內首例“無癌寶寶”目前已滿半歲,隨訪顯示寶寶身體指標一切正常。據悉,這是我國首次將試管嬰兒的孕前基因篩選範圍擴大至惡性腫瘤領域並取得成功,不僅意味著PGD技術的應用範圍被拓寬,打開了癌症相關基因篩檢的大門,也標誌著我國在遺傳性腫瘤基因檢測及孕前診斷領域達到世界先進水平。 這一被“阻斷”的致癌基因是位於人類染色體 13q14位置的RB1。它本是一個抑癌基因,但時常因發生突變而“失活”, 失活後極可能導致視網膜母細胞瘤——兒童中最常見的原發性“眼癌”和第三位最常見的兒童期癌症。 統計表明,約35%-40%的視網膜母細胞瘤患者的生殖系存在RB1基因突變,這將導致其後代存在極高的患癌風險。 據介紹,這名“無癌寶寶”的父親兩歲時便因患視網膜母細胞瘤而被迫摘除了病變的右眼,中信湘雅生殖與遺傳專科醫院在對其進行基因檢測時確認, RB1基因在9號外顯子上存在一個缺失突變,導致蛋白編碼錯誤,造成後代惡性腫瘤的高發風險。該院採用輔助生殖技術與PGD技術相結合,對體外受精獲得的胚胎進行了篩查,將不存在該致病突變的胚胎移植入母親子宮,並成功生育。由於從胚胎時期起就排除了在家族中傳遞的致癌基因突變,這名今年3月誕生的“無癌寶寶”未來患這種癌症的機率已大幅降低。 鑑於近年來育齡期人群患癌症的比例不斷增加,盧光琇呼籲,應加強對腫瘤生殖學這一腫瘤學與生殖醫學交叉形成的新興學科的研究,以盡最大可能幫助患者實現延長生命和保存生育能力的平衡,達到抗癌和優生的雙重目的。 生殖與遺傳專科醫院遺傳中心已可對遺傳性胃癌、腎癌、胰腺癌、前列腺癌、子宮內膜癌及視網膜母細胞瘤等腫瘤疾病開展生殖前遺傳診斷和篩查,已成為國內最大的細胞和分子遺傳學診斷中心,和我國基因診斷數量和種類最多的中心之一。 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集 內置圖片 2 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(16) |
2015-09-29 |
試管嬰兒孕前基因篩選首次擴至癌症: 1遺傳性胃癌、 2腎癌、 3胰腺癌 4前列腺癌、 5子宮內膜癌 6視網膜母細胞---13q14位置的RB1 內置圖片 1 中南大學教授、中信湘雅生殖與遺傳專科醫院院長盧光琇 宣布,她所在的研究團隊運用最新的胚胎植入前遺傳學診斷(PGD)技術,對一個家族性致癌基因在後代中的傳遞進行了排除,通過該技術誕生的國內首例“無癌寶寶”目前已滿半歲,隨訪顯示寶寶身體指標一切正常。據悉,這是我國首次將試管嬰兒的孕前基因篩選範圍擴大至惡性腫瘤領域並取得成功,不僅意味著PGD技術的應用範圍被拓寬,打開了癌症相關基因篩檢的大門,也標誌著我國在遺傳性腫瘤基因檢測及孕前診斷領域達到世界先進水平。 這一被“阻斷”的致癌基因是位於人類染色體 13q14位置的RB1。它本是一個抑癌基因,但時常因發生突變而“失活”, 失活後極可能導致視網膜母細胞瘤——兒童中最常見的原發性“眼癌”和第三位最常見的兒童期癌症。 統計表明,約35%-40%的視網膜母細胞瘤患者的生殖系存在RB1基因突變,這將導致其後代存在極高的患癌風險。 據介紹,這名“無癌寶寶”的父親兩歲時便因患視網膜母細胞瘤而被迫摘除了病變的右眼,中信湘雅生殖與遺傳專科醫院在對其進行基因檢測時確認, RB1基因在9號外顯子上存在一個缺失突變,導致蛋白編碼錯誤,造成後代惡性腫瘤的高發風險。該院採用輔助生殖技術與PGD技術相結合,對體外受精獲得的胚胎進行了篩查,將不存在該致病突變的胚胎移植入母親子宮,並成功生育。由於從胚胎時期起就排除了在家族中傳遞的致癌基因突變,這名今年3月誕生的“無癌寶寶”未來患這種癌症的機率已大幅降低。 鑑於近年來育齡期人群患癌症的比例不斷增加,盧光琇呼籲,應加強對腫瘤生殖學這一腫瘤學與生殖醫學交叉形成的新興學科的研究,以盡最大可能幫助患者實現延長生命和保存生育能力的平衡,達到抗癌和優生的雙重目的。 生殖與遺傳專科醫院遺傳中心已可對遺傳性胃癌、腎癌、胰腺癌、前列腺癌、子宮內膜癌及視網膜母細胞瘤等腫瘤疾病開展生殖前遺傳診斷和篩查,已成為國內最大的細胞和分子遺傳學診斷中心,和我國基因診斷數量和種類最多的中心之一。 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集 內置圖片 2 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(1) |
2015-09-29 |
試管嬰兒孕前基因篩選首次擴至癌症 1遺傳性胃癌、 2腎癌、 3胰腺癌 4前列腺癌、 5子宮內膜癌 內置圖片 1 6視網膜母細胞---13q14位置的RB1 中南大學教授、中信湘雅生殖與遺傳專科醫院院長盧光琇 宣布,她所在的研究團隊運用最新的胚胎植入前遺傳學診斷(PGD)技術,對一個家族性致癌基因在後代中的傳遞進行了排除,通過該技術誕生的國內首例“無癌寶寶”目前已滿半歲,隨訪顯示寶寶身體指標一切正常。據悉,這是我國首次將試管嬰兒的孕前基因篩選範圍擴大至惡性腫瘤領域並取得成功,不僅意味著PGD技術的應用範圍被拓寬,打開了癌症相關基因篩檢的大門,也標誌著我國在遺傳性腫瘤基因檢測及孕前診斷領域達到世界先進水平。 這一被“阻斷”的致癌基因是位於人類染色體 13q14位置的RB1。它本是一個抑癌基因,但時常因發生突變而“失活”, 失活後極可能導致視網膜母細胞瘤——兒童中最常見的原發性“眼癌”和第三位最常見的兒童期癌症。 統計表明,約35%-40%的視網膜母細胞瘤患者的生殖系存在RB1基因突變,這將導致其後代存在極高的患癌風險。 據介紹,這名“無癌寶寶”的父親兩歲時便因患視網膜母細胞瘤而被迫摘除了病變的右眼,中信湘雅生殖與遺傳專科醫院在對其進行基因檢測時確認, RB1基因在9號外顯子上存在一個缺失突變,導致蛋白編碼錯誤,造成後代惡性腫瘤的高發風險。該院採用輔助生殖技術與PGD技術相結合,對體外受精獲得的胚胎進行了篩查,將不存在該致病突變的胚胎移植入母親子宮,並成功生育。由於從胚胎時期起就排除了在家族中傳遞的致癌基因突變,這名今年3月誕生的“無癌寶寶”未來患這種癌症的機率已大幅降低。 鑑於近年來育齡期人群患癌症的比例不斷增加,盧光琇呼籲,應加強對腫瘤生殖學這一腫瘤學與生殖醫學交叉形成的新興學科的研究,以盡最大可能幫助患者實現延長生命和保存生育能力的平衡,達到抗癌和優生的雙重目的。 生殖與遺傳專科醫院遺傳中心已可對遺傳性胃癌、腎癌、胰腺癌、前列腺癌、子宮內膜癌及視網膜母細胞瘤等腫瘤疾病開展生殖前遺傳診斷和篩查,已成為國內最大的細胞和分子遺傳學診斷中心,和我國基因診斷數量和種類最多的中心之一。 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集 內置圖片 2 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(2) |
2015-09-29 |
試管嬰兒孕前基因篩選首次擴至癌症 1遺傳性胃癌、 2腎癌、 3胰腺癌 4前列腺癌、 5子宮內膜癌 內置圖片 1 6視網膜母細胞---13q14位置的RB1 中南大學教授、中信湘雅生殖與遺傳專科醫院院長盧光琇 宣布,她所在的研究團隊運用最新的胚胎植入前遺傳學診斷(PGD)技術,對一個家族性致癌基因在後代中的傳遞進行了排除,通過該技術誕生的國內首例“無癌寶寶”目前已滿半歲,隨訪顯示寶寶身體指標一切正常。據悉,這是我國首次將試管嬰兒的孕前基因篩選範圍擴大至惡性腫瘤領域並取得成功,不僅意味著PGD技術的應用範圍被拓寬,打開了癌症相關基因篩檢的大門,也標誌著我國在遺傳性腫瘤基因檢測及孕前診斷領域達到世界先進水平。 這一被“阻斷”的致癌基因是位於人類染色體 13q14位置的RB1。它本是一個抑癌基因,但時常因發生突變而“失活”, 失活後極可能導致視網膜母細胞瘤——兒童中最常見的原發性“眼癌”和第三位最常見的兒童期癌症。 統計表明,約35%-40%的視網膜母細胞瘤患者的生殖系存在RB1基因突變,這將導致其後代存在極高的患癌風險。 據介紹,這名“無癌寶寶”的父親兩歲時便因患視網膜母細胞瘤而被迫摘除了病變的右眼,中信湘雅生殖與遺傳專科醫院在對其進行基因檢測時確認, RB1基因在9號外顯子上存在一個缺失突變,導致蛋白編碼錯誤,造成後代惡性腫瘤的高發風險。該院採用輔助生殖技術與PGD技術相結合,對體外受精獲得的胚胎進行了篩查,將不存在該致病突變的胚胎移植入母親子宮,並成功生育。由於從胚胎時期起就排除了在家族中傳遞的致癌基因突變,這名今年3月誕生的“無癌寶寶”未來患這種癌症的機率已大幅降低。 鑑於近年來育齡期人群患癌症的比例不斷增加,盧光琇呼籲,應加強對腫瘤生殖學這一腫瘤學與生殖醫學交叉形成的新興學科的研究,以盡最大可能幫助患者實現延長生命和保存生育能力的平衡,達到抗癌和優生的雙重目的。 生殖與遺傳專科醫院遺傳中心已可對遺傳性胃癌、腎癌、胰腺癌、前列腺癌、子宮內膜癌及視網膜母細胞瘤等腫瘤疾病開展生殖前遺傳診斷和篩查,已成為國內最大的細胞和分子遺傳學診斷中心,和我國基因診斷數量和種類最多的中心之一。 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集 內置圖片 2 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(3) |
2015-09-29 |
44歲借卵一次試管嬰兒冷凍胚胎成功懷孕在博元婦產科 FET egg donation L小姐因為不孕症多年也曾經在別醫院做過無數次的試管嬰兒但都沒有成功, 基於她卵巢功能很低,我建議她借卵生子, 她在別的醫院做過很多次試管嬰兒花了很多費用, 也因此她希望在整個試管嬰兒過程能盡量的節省費用, 在第一次的借卵、捐卵的試管嬰兒新鮮胚胎植入作業一次就成功懷孕,可惜第一次新鮮胚胎是以子宮外孕收場, 因為44歲,這一次她解凍了6個胚胎的其中三顆植入,這一次成功懷孕了,抽血b-hcg指數231.1, 恭喜她新鮮胚胎跟冷凍胚胎都能夠著床! 新鮮胚胎有時候因為比較容易子宮收縮, 或子宮蠕動會比較容易子宮外孕, 最近的研究發現冷凍胚胎的懷孕率或胚胎著床率比較高, 恭喜她借卵的冷凍胚胎一次成功懷孕!
|
(11) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(1) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(4) |
2015-09-29 |
恭喜博元婦產科院長蔡鋒博醫師連續六年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出貢獻的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的傑出貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師:主治項目:不孕症、各項婦科產科疾病及手術 ◆院長 蔡鋒博 全臺灣首例:子宮結核治癒後,以試管嬰兒成功使病人生下雙胞胎 53歲己停經4年,婦女以試管嬰兒成功使病人生下雙胞胎 .2001年世界名醫錄,2002年世界名醫錄,2003年世界名醫錄,2004年世界名醫錄,2005年世界名醫錄,2006年世界名醫錄, .彰化市博元婦產科不孕症試管嬰兒中心 院長 .美國不孕症醫學會(ASRM)會員 .多本不孕症醫學著作 .各大報醫學專欄作家:聯合報、自由時報、中國時報、 大成報、台灣日報、台灣時報 .知名電視節目「做人真簡單」主持人 恭喜蔡鋒博院長連續五年榮登世界名人錄 (Who's Who in The World) .著名電視節目:媽媽教室,「女人女人」、「做人真簡單」主持人 host 臺視,中視,華視,彰視,TVBS,東森TV,民視TV,三立TV,年代TV...專訪 不孕症著作3本,婦科,產科著作10本 著作 全世界第1本RU486中文著作:如何安全使用RU486,獲RU486發明人 E.E.Baulieu 博士寫序 恭喜蔡鋒博院長連續五年榮登世界名醫錄 世界名醫錄又稱為世界名人錄Who,s Who in the World 每一年會在全世界各個領域去找出傑出的人物,在這個得來不容易的殊榮由彰化市博元不孕症試管嬰兒中心院長蔡鋒博,以不孕症的研究及服務不孕症的病人,在做不孕症的衛生教育所做的貢獻,連續五年榮登世界名醫錄,在世界名醫錄裡面這樣描述蔡醫師: 內置圖片 1 內置圖片 2 博元婦產科蔡鋒博陳昭雯醫師 http://www.babymaker.com.tw/ 博元youtube:http://goo.gl/DFOL2r 博元手機APP: http://goo.gl/NOyhFd到以下網址,就是博元手機APP手機版網頁app:http://goo.gl/NOyhFd,下載、安裝博元婦產科助妳好孕大全集盡在優酷網http://goo.gl/w1Un0k 成為 博元臉書粉絲 : http://www.facebook.com/yes7260678 蔡醫師-門診表 :週一至週五下午、晚上& 週六全天 下午:3∼5點;晚上:6點半∼9點 上午:9∼12點 陳醫師-門診表:週一至週五早上 上午:9∼12點 電話:04-7260678 Fax: 04-7225626 e-mail: ok7260678@gmail.com 掛號專線:04-7260678 (ext:111;112)地址: 彰化市中正路1段392號 MAP: http://goo.gl/tp3rEE 博元 Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 到博元婦產科最快的方法是坐國光號http://goo.gl/bsm7uQ Address:500; 392 Zhong Zheng Road ,Sec.1 ,Chang-Hua ,Taiwan 您搭高鐵怎麼到博元婦產科?see-http://www.youtube.com/watch?v=CQ163SfmN4s 坐火車如何"走到"博元婦產科?http://goo.gl/SNjhV2 ubike到博元婦產科:http://goo.gl/BZBX4X 博元婦產科官方Youtube http://goo.gl/6UTLeV 博元婦產科官方部落格http://hi7250567.blogspot.com/ 博元婦產科Twitter: http://twitter.com/7260678 博元婦產科官方flickr http://www.flickr.com/photos/85944727@N00/ 博元google+:google.com/+彰化博元婦產科https://plus.google.com/114810735851376657250/about?cfem=1 https://plus.google.com/114810735851376657250/about?cfem=1來博元婦產科,停車場在哪?(1)http://www.youtube.com/watch?v=Xeg5JDmRwyc(2) http://www.youtube.com/watch?v=AOa-oC7cOMQ 博元婦產科 Line ID:047260678 博元婦產科微信 ID :ok7260678 line博元 http://line.me/ti/p/F5Tmzofe7R博元網站手機版最底下有Line標籤,點入,即可對博元婦產科發問,或查詢你的檢查報告
|
(1) |